List of Symbol Definitions

а	long dimension for a section subjected to torsion (in, mm); acceleration (ft/sec ² , m/sec ²); width of the base of a retaining wall for pressure calculation (ft, m); equivalent square column size in spread footing design (in, ft, mm, m); distance used in beam formulas (ft, m); depth of the effective compression block in a concrete beam (in, mm)
а	
a	area bounded by the centerline of a thin walled section subjected to torsion (in ² , mm ²)
A	area, often cross-sectional (in ² , ft ² , mm ² , m ²)
A_b	area of a bolt (in ² , mm ²)
A_e	<u>effective</u> net area found from the product of the net area A_n by the shear lag factor U (in ² , ft ² , mm ² , m ²)
A_g	gross area, equal to the total area ignoring any holes or reinforcement (in ² , ft ² , mm ² , m ²)
A_{gv}	gross area subjected to shear for block shear rupture (in ² , ft ² , mm ² , m ²)
A_n	net area, equal to the gross area subtracting any holes (in ² , ft ² , mm ² , m ²) (see A_e)
A_{net}	net area, equal to the gross area subtracting any reinforcement (in ² , ft ² , mm ² , m ²)
A_{nt}	net area subjected to tension for block shear rupture (in ² , ft ² , mm ² , m ²)
A_{nv}	net area subjected to shear for block shear rupture (in ² , ft ² , mm ² , m ²)
A_p	bearing area (in ² , ft ² , mm ² , m ²)
$A_{req'd}$	area required to satisfy allowable stress (in ² , ft^2 , mm^2 , m^2)
A_s	area of steel reinforcement in concrete beam and masonry design (in ² , ft ² , mm ² , m ²)
A'_s	area of steel compression reinforcement in concrete beam design (in ² , ft ² , mm ² , m ²)
A_{st}	area of steel reinforcement in concrete and masonry column design (in ² , ft ² , mm ² , m ²)
A_{throat}	area across the throat of a weld (in^2, ft^2, mm^2, m^2)
A_{v}	area of concrete shear stirrup reinforcement (in ² , ft ² , mm ² , m ²)
A_{web}	web area in a steel beam equal to the depth x web thickness (in^2, ft^2, mm^2, m^2)
A_{I}	area of column in spread footing design (in ² , ft ² , mm ² , m ²)
A_2	projected bearing area of column load in spread footing design (in ² , ft ² , mm ² , m ²)
ASD	Allowable Stress Design
b	width, often cross-sectional (in, ft, mm, m); narrow dimension for a section subjected to torsion (in, mm); number of truss members; rectangular column dimension in concrete footing design (in, mm, m); distance used in beam formulas (ft, m)
b_E	effective width of the flange of a concrete T beam cross section (in, mm)
b_{f}	width of the flange of a steel or concrete T beam cross section (in, mm)
b_o	perimeter length for two-way shear in concrete footing design (in, ft, mm, m)
b_w	width of the stem (web) of a concrete T beam cross section (in, mm)

- *B* spread footing or retaining wall base dimension in concrete design (ft, m); dimension of a steel base plate for concrete footing design (in, mm, m)
- B_s width within the longer dimension of a rectangular spread footing that reinforcement must be concentrated within for concrete design (ft, m)
- B_1 factor for determining M_u for combined bending and compression
- distance from the neutral axis to the top or bottom edge of a beam (in, mm, m);
 distance from the center of a circular shape to the surface under torsional shear strain (in, mm, m);

rectangular column dimension in concrete footing design (in, mm, m); the distance from the top of a masonry beam to the neutral axis

- c_i distance from the center of a circular shape to the inner surface under torsional shear strain (in, mm, m)
- c_o distance from the center of a circular shape to the outer surface under torsional shear strain (in, mm, m)
- c_1 coefficient for shear stress for a rectangular bar in torsion
- c_2 coefficient for shear twist for a rectangular bar in torsion
- *CL*, ℓ center line
- C compression label; compression force (lb, kips, N, kN): dimension of a steel base plate for concrete footing design (in, mm, m)
- C_b modification factor for moment in ASD & LRFD steel beam design, $C_b = 1$ for simply supported beams (0 moments at the ends)
- C_c column slenderness classification constant for steel column design; compressive force in the concrete of a doubly reinforced concrete beam (lb, k, N, kN)
- C_C curvature factor for laminated arch design
- C_D load duration factor for wood design
- C_f form factor for circular sections or or square sections loaded in plane of diagonal for wood design
- C_{fu} flat use factor for other than decks in wood design
- C_F size factor for wood design
- C_H shear stress factor for wood design
- C_i incising factor for wood design
- C_L beam stability factor for wood design
- C_m modification factor for combined stress in steel design; compression force in the masonry for masonry design (lb, k, N, kN)
- C_M wet service factor for wood design
- C_p column stability factor for wood design
- C_r repetitive member factor for wood design
- C_{v} web shear coefficient for steel design
- C_V volume factor for glue laminated timber design

- C_s compressive force in the compression steel of a doubly reinforced concrete beam (lb, k, N, KN)
- C_t temperature factor for wood design
- $\begin{array}{ll} d & \mbox{depth, often cross-sectional (in, mm, m);} \\ & \mbox{diameter (in, mm, m);} \\ & \mbox{perpendicular distance from a force to a point in a moment calculation (in, ft, mm, m);} \\ & \mbox{effective depth from the top of a reinforced concrete or masonry beam to the centroid of the tensile steel (in, ft, mm, m):} \\ & \mbox{critical cross section dimension of a rectangular timber column cross section related to the profile (axis) for buckling (in, mm, m);} \\ & \mbox{symbol in calculus to represent a very small change (like the greek letters for d, see $\delta \& Δ) } \end{array}$
- *d* ´ effective depth from the top of a reinforced concrete beam to the centroid of the compression steel (in, ft, mm, m)
- d_b bar diameter of a reinforcing bar (in, mm) nominal bolt diameter (in, mm)
- d_f depth of a steel column flange (wide flange section) (in, mm)
- d_x difference in the x direction between an area centroid (\overline{x}) and the centroid of the composite shape (\hat{x}) (in, mm)
- d_y difference in the y direction between an area centroid (\overline{y}) and the centroid of the composite shape (\hat{y}) (in, mm)
- *D* diameter of a circle (in, mm, m); dead load for LRFD design
- DL dead load
- *e* eccentric distance of application of a force (P) from the centroid of a cross section (in, mm)
- *E* modulus of elasticity (psi; ksi, kPa, MPa, GPa); earthquake load for LRFD design
- E_c modulus of elasticity of concrete (psi; ksi, kPa, MPa, GPa)
- E_s modulus of elasticity of steel (psi; ksi, kPa, MPa, GPa)
- f symbol for stress (psi, ksi, kPa, MPa)
- f_a calculated axial stress (psi, ksi, kPa, MPa)
- f_b calculated bending stress (psi, ksi, kPa, MPa)
- f_c calculated compressive stress (psi, ksi, kPa, MPa)
- f'_c concrete design compressive stress (psi, ksi, kPa, MPa)
- f_{cr} calculated column stress based on the critical column load P_{cr} (psi, ksi, kPa, MPa)
- f_m calculated compressive stress in masonry (psi, ksi, kPa, MPa)
- f'_m masonry design compressive stress (psi, ksi, kPa, MPa)
- f_p calculated bearing stress (psi, ksi, kPa, MPa)
- f_s stress in the steel reinforcement for concrete or masonry design (psi, ksi, kPa, MPa)

- f'_s compressive stress in the compression reinforcement for concrete beam design (psi, ksi, kPa, MPa)
- f_t calculated tensile stress (psi, ksi, kPa, MPa)
- f_v calculated shearing stress (psi, ksi, kPa, MPa)
- f_x combined stress in the direction of the major axis of a column (psi, ksi, kPa, MPa)
- f_v yield stress (psi, ksi, kPa, MPa)
- *F* force (lb, kip, N, kN);
 capacity of a nail in shear (lb, kip, N, kN);
 symbol for allowable stress in design codes (psi, ksi, kPa, MPa);
 fluid load for LRFD design
- F_a allowable axial stress (psi, ksi, kPa, MPa)
- F_b allowable bending stress (psi, ksi, kPa, MPa)
- F'_{b} allowable bending stress for combined stress for wood design (psi, ksi, kPa, MPa)
- F_c allowable compressive stress (psi, ksi, kPa, MPa)
- $F_{c\perp}$ allowable compressive stress perpendicular to the wood grain (psi, ksi, kPa, MPa)

F_{connector} resistance capacity of a connector (lb, kips, N, kN)

- F_{cE} intermediate compressive stress for ASD wood column design dependant on material (psi, ksi, kPa, MPa)
- F_{cr} flexural buckling (column) stress in ASD and LRFD (psi, ksi, kPa, MPa)
- F'_{c} allowable compressive stress for ASD wood column design (psi, ksi, kPa, MPa)
- F_c^* intermediate compressive stress for ASD wood column design dependant on load duration (psi, ksi, kPa, MPa)
- F_e elastic critical buckling stress is steel design

 F_{EXX} yield strength of weld material (psi, ksi, kPa, MPa)

Fhorizontal-resist resultant frictional force resisting sliding in a footing or retaining wall (lb, kip, N, kN)

- F_n nominal strength in LRFD steel design (psi, ksi, kPa, MPa) nominal tension or shear strength of a bolt (psi, ksi, kPa, MPa)
- F_p allowable bearing stress parallel to the wood grain (psi, ksi, kPa, MPa)
- F_s allowable tensile stress in reinforcement for masonry design (psi, ksi, kPa, MPa)
- $F_{sliding}$ resultant force causing sliding in a footing or retaining wall (lb, kip, N, kN)
- F_t allowable tensile stress (psi, ksi, kPa, MPa)
- F_{ν} allowable shear stress (psi, ksi, kPa, MPa); allowable shear stress in a welded connection
- F_x force component in the x coordinate direction (lb, kip, N, kN)
- F_y force component in the y coordinate direction (lb, kip, N, kN); yield stress (psi, ksi, kPa, MPa)
- F_{yw} yield stress in the web of a steel wide flange section (psi, ksi, kPa, MPa)

- F_u ultimate stress a material can sustain prior to failure (psi, ksi, kPa, MPa)F.S.factor of safetygacceleration due to gravity, 32.17 ft/sec², 9.807 m/sec²;
- *g* acceleration due to gravity, 32.17 ft/sec², 9.807 m/sec²; gage spacing of staggered bolt holes (in, mm)
- *G* shear modulus (psi; ksi, kPa, MPa, GPa); gigaPascals (10⁹ Pa or 1 kN/mm²); relative stiffness of columns to beams in a rigid connection (*see* Ψ); specific gravity (ie. factor multiplied by density of water to get density)
- $\begin{array}{ll} h & \text{depth, often cross-sectional (in, ft, mm, m);} \\ & \text{height (in, ft, mm, m);} \\ & \text{sag of a cable structure (ft, m);} \\ & \text{effective height of a wall or column (see <math>\ell_e$)} \end{array}
- h_c height of the web of a wide flange steel section (in, ft, mm, m)
- h_f depth of a flange in a T section (in, ft, mm, m); height of a concrete spread footing (in, ft, mm, m)
- *H* hydraulic soil load for LRFD design; height of retaining wall (ft, m)
- H_A horizontal force due to active soil pressure (lb, k, N, kN)
- *I* moment of inertia (in^4, mm^4, m^4)
- \bar{I} moment of inertia about the centroid (in⁴, mm⁴, m⁴)
- I_c moment of inertia about the centroid (in⁴, mm⁴, m⁴)
- I_{min} minimum moment of inertia of I_x and I_y (in⁴, mm⁴, m⁴)
- $I_{transformed}$ moment of inertia of a multi-material section transformed to one material (in⁴, mm⁴, m⁴)
- I_x moment of inertia with respect to an x-axis (in⁴, mm⁴, m⁴)
- I_y moment of inertia with respect to a y-axis (in⁴, mm⁴, m⁴)
- *j* multiplier by effective depth of masonry section for moment arm, jd (*see d*)
- J, J_o polar moment of inertia (in⁴, mm⁴, m⁴)
- k kips (1000 lb);
 shape factor for plastic design of steel beams, M_p/M_y;
 effective length factor for columns (*also K*);
 distance from outer face of W flange to the web toe of fillet (in, mm);
 multiplier by effective depth of masonry section for neutral axis, kd
- kg kilograms
- kN kiloNewtons (10³ N)
- kPa kiloPascals (10³ Pa)
- K effective length factor with respect to column end conditions (also k); masonry mortar strength designation
- K_{cE} material factor for wood column design

ℓ	length (in, ft, mm, m);
	cable span (ft, m)

- l_d development length for reinforcing steel (in, ft, mm, m) (also L_d)
- l_{dc} development length for column dowels (in, ft, mm, m)
- l_{dh} development length for hooks (in, ft, mm, m)
- ℓ_e effective length that can buckle for wood column design (in, ft, mm, m) (also L_e)
- l_n clear span from face of support to face of support in concrete design (in, ft, mm, m)
- l_s lap splice length in concrete design (in, ft, mm, m)
- *lb* pound force
- L length (in, ft, mm, m); live load for LRFD design; spread footing dimension in concrete design (ft, m)
- L_b unbraced length of a steel beam in LRFD design (in, ft, mm, m)
- L_c clear distance between the edge of a hole and edge of next hole or edge of the connected steel plate in the direction of the load (in, ft, mm, m)
- L_d development length of reinforcement in concrete (ft, m) (also l_d)
- L_e effective length that can buckle for column design (in, ft, mm, m) (also ℓ_e)
- L_m projected length for bending in concrete footing design (ft, m)
- L_p maximum unbraced length of a steel beam in LRFD design for full plastic flexural strength (in, ft, mm, m)
- *L_r* roof live load in LRFD design;
 maximum unbraced length of a steel beam in LRFD design for inelastic lateral-torsional buckling (in, ft, mm, m)
- *L'* length of an angle in a connector with staggered holes (in, mm); length of the one-way shear area in concrete footing design (ft, m)
- *LL* live load
- *LRFD* Load and Resistance Factor Design
- *m* mass (lb-mass, g, kg); meters
- mm millimeters
- *M* moment of a force or couple (lb-ft, kip-ft, N-m, kN-m); bending moment (lb-ft, kip-ft, N-m, kN-m); masonry mortar strength designation
- *M_a* required bending moment in steel ASD beam design (unified) (lb-ft, kip-ft, N-m, kN-m)
- M_A moment value at quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
- M_B moment value at half point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)

- M_C moment value at three quarter point of unbraced beam length for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
- *M_m* moment capacity of a reinforced masonry beam (lb-ft, kip-ft, N-m, kN-m)
- M_n nominal flexure strength with the full section at the yield stress for LRFD steel beam design (lb-ft, kip-ft, N-m, kN-m); nominal flexure strength with the steel reinforcement at the yield stress and compressive stress at the concrete design strength for reinforced beam design (lb-ft, kip-ft, N-m, kN-m)

*M*_{overturning} resulting moment from all forces on a footing or retaining wall causing overturning (lb-ft, kip-ft, N-m, kN-m)

- M_p (also M_{ult}) internal bending moment when all fibers in a cross section reach the yield stress (lbft, kip-ft, N-m, kN-m)
- M_{resist} resulting moment from all forces on a footing or retaining wall resisting overturning (lb-ft, kip-ft, N-m, kN-m)
- M_u maximum moment from factored loads for LRFD beam design (lb-ft, kip-ft, N-m, kN-m)
- M_{ult} (also M_p) internal bending moment when all fibers in a cross section reach the yield stress (lbft, kip-ft, N-m, kN-m)
- M_y internal bending moment when the extreme fibers in a cross section reach the yield stress (lb-ft, kip-ft, N-m, kN-m)
- M_1 smaller end moment used to calculate C_m for combined stresses in a beam-column (lb-ft, kip-ft, N-m, kN-m)
- M_2 larger end moment used to calculate C_m for combined stresses in a beam-column (lb-ft, kip-ft, N-m, kN-m)
- *MPa* megaPascals (10^6 Pa or 1 N/mm²)
- *n* number of truss joints, nails or bolts;modulus of elasticity transformation coefficient for steel to concrete or masonry
- *n.a.* neutral axis (axis connecting beam cross-section centroids)
- N Newtons (kg-m/sec²);
 bearing-type connection with bolt threads included in shear plane; normal load (lb, kip, N, kN); masonry mortar strength designation; bearing length on a wide flange steel section (in, mm); number of stories
- *o* point of overturning of a retaining wall, commonly at the "toe"

o.c. on-center

- *O* point of origin; masonry mortar strength designation
- *p* pitch of nail or bolt spacing (in, ft, mm, m); pressure (lb/ft², kips/ft², N/m², Pa, MPa)
- p_A active soil pressure (lb/ft², kips/ft², N/m², Pa, MPa)
- *P* force, concentrated (point) load (lb, kip, N, kN);axial load in a column or beam-column (lb, kip, N, kN)

- P_a allowable axial load (lb, kip, N, kN);
 - required axial force in ASD steel design (unified) (lb, kip, N, kN)

 $P_{allowable}$ allowable axial load (lb, kip, N, kN)

- P_c available axial strength for steel unified design (lb, kip, N, kN)
- P_{cr} critical (failure) load in column calculations (lb, kip, N, kN)
- P_{dowels} nominal capacity of dowels from concrete column to footing in concrete design ((lb, kip, N, kN))
- P_{el} Euler buckling strength in steel unified design (lb, kip, N, kN)
- P_n nominal column or bearing load capacity in LRFD steel and concrete design (lb, kip, N, kN); nominal axial load for a tensile member or connection in LRFD steel (lb, kip, N, kN)
- P_o maximum axial force with no concurrent bending moment in a reinforced concrete column (lb, kip, N, kN)
- P_r required axial force in steel unified design (lb, kip, N, kN)
- P_u factored column load calculated from load factors in LRFD steel and concrete design (lb, kip, N, kN);

factored axial load for a tensile member or connection in LRFD steel (lb, kip, N, kN)

- *Pa* Pascals (N/m^2)
- *q* shear flow (lb/in, kips/ft, N/m, kN/m); soil bearing pressure (lb/ft², kips/ft², N/m², Pa, MPa)

 $q_{allowed}$ allowable soil bearing pressure (lb/ft², kips/ft², N/m², Pa, MPa)

- q_g gross allowed soil pressure (lb/ft², kips/ft², N/m², Pa, MPa)
- q_{net} net allowed soil bearing pressure (lb/ft², kips/ft², N/m², Pa, MPa)
- q_u ultimate soil bearing strength in allowable stress design (lb/ft², kips/ft², N/m, Pa, MPa); factored soil bearing pressure in concrete design from load factors (lb/ft², kips/ft², N/m, Pa, MPa) MPa)
- *Q* first moment area used in shearing stress calculations (in³, mm³, m³): generic axial load quantity for LRFD design (*also see R*)

 $Q_{connected}$ first moment area used in shearing stress calculations for built-up beams (in³, mm³, m³)

- Q_x first moment area about an x axis (using y distances) (in³, mm³, m³)
- Q_y first moment area about an y axis (using x distances) (in³, mm³, m³)
- *r* radius of a circle or arc (in, mm, m); radius of gyration (in, mm, m)
- r_o polar radius of gyration (in, mm, m)
- r_x radius of gyration with respect to an x-axis (in, mm, m)
- r_y radius of gyration with respect to a y-axis(in, mm, m)
- *R* force, reaction or resultant (lb, kip, N, kN);
 radius of curvature of a beam (ft, m);
 rainwater or ice load for LRFD design;
 generic load quantity (force, shear, moment, etc.) for LRFD design (also see Q);
 radius of curvature of a laminated arch (ft, m)

- R_a required strength (ASD-unified) (also see V_a , M_a)
- R_n concrete beam design ratio = M_u/bd^2 (lb/in², MPa) nominal value for LRFD design to be multiplied by ϕ (also see P_n , M_n) nominal value for ASD design to be divided by the safety factor Ω
- R_u design value for LRFD design based on load factors (also see P_u , M_u)
- R_x reaction or resultant component in the x coordinate direction (lb, kip, N, kN)
- R_y reaction or resultant component in the y coordinate direction (lb, kip, N, kN)
- *s* length of a segment of a thin walled section (in, mm);
 spacing of stirrups in reinforced concrete beams (in, mm);
 longitudinal center-to-center spacing of any two consecutive holes (in, mm)
- s.w. self-weight
- section modulus (in³, mm³, m³);
 snow load for LRFD design;
 allowable strength per length of a weld for a given size (lb/in, kips/in, N/mm, kN/m);
 masonry mortar strength designation

 $S_{required}$ section modulus required to not exceed allowable bending stress (in³, mm³, m³)

- S_x section modulus with respect to the x-centroidal axis (in³, mm³, m³)
- S_y section modulus with respect to the y-centroidal axis (in³, mm³, m³)
- *SC* slip critical bolted connection
- S4S surface-four-sided
- t thickness (in, mm, m)
- t_f thickness of the flange of a steel beam cross section (in, mm, m)
- t_w thickness of the web of a steel beam cross section (in, mm, m)
- *T* tension label;

tensile force (lb, kip, N, kN); torque (lb-ft, k-ft, N-m, kN-m); throat size of a weld (in, mm); effect of thermal load for LRFD design; period of vibration (sec)

- T_s tension force in the steel reinforcement for masonry design (lb, kip, N, kN)
- U shear lag factor for steel tension member design (see A_e and A_{net})
- U_{bs} reduction coefficient for block shear rupture
- *v* shear force per unit length (lb/ft, k/ft, N/m, kN/m) (see q)
- V volume (in³, ft³, mm³, m³); shear force (lb, k, N, kN); wind speed (mi/hr, m/hr)
- V_a required shear in steel ASD design (unified) (lb, kip, N, kN)
- V_c shear force capacity in concrete (lb, kip, N, kN)
- V_n nominal shear strength capacity for LRFD beam design (lb, kip, N, kN)
- V_s shear force capacity in steel shear stirrups(lb, kip, N, kN)

- V_u maximum shear from factored loads for LRFD design (lb, kip, N, kN); shear at a distance *d* away from the face of support for reinforced concrete beam design (lb, kip, N, kN)
- V_{u1} maximum one-way shear from factored loads for LRFD beam design (lb, kip, N, kN)
- V_{u2} maximum two-way shear from factored loads for LRFD beam design (lb, kip, N, kN)
- *w* load per unit length on a beam (lb/ft, k/ft, N/m, kN/m) (*also* ω); load per unit area (lb/ft², kips/ft², N/m², Pa, MPa); width dimension (in, ft, mm, m)

wadjusted distributed load for equivalent live load deflection limit (lb/ft, kip/ft, N/m, kN/m)

- w_c weight of reinforced concrete per unit volume (lb/ft³, N/m³)
- $w_{equivalent}$ the equivalent distributed load derived from the maximum bending moment (lb/ft, kip/ft, N/m, kN/m)
- w_u factored load per unit length on a beam from load factors (lb/ft, kip/ft, N/m, kN/m); factored load per unit area on a surface from load factors (lb/ft², kip/ft², N/m², kN/m²)
- W weight (lb, kip, N, kN);
 total load from a uniform distribution (lb, kip, N, kN);
 wind load for LRFD design;
 wide flange shape designation (i.e. W 21 x 68)
- *x* a distance in the x direction (in, ft, mm, m); the distance from the top of a concrete beam to the neutral axis
- \overline{x} the distance in the x direction from a reference axis to the centroid of a shape (in, mm)
- \hat{x} the distance in the x direction from a reference axis to the centroid of a composite shape (in, mm)
- *X* bearing-type connection with bolt threads excluded from shear plane
- y a distance in the y direction (in, ft, mm, m); distance from the neutral axis to the y-level of a beam cross section (in, mm)
- \overline{y} the distance in the y direction from a reference axis to the centroid of a shape (in, mm)
- \hat{y} the distance in the y direction from a reference axis to the centroid of a composite shape (in, mm)
- *Z* plastic section modulus of a steel beam (in³, mm³);
 lateral design value for a single fastener in a timber connection (lb/nail, k/bolt)
- Z_x plastic section modulus of a steel beam with respect to the x axis (in³, mm³)
- ' symbol for feet
- " symbol for inches
- # symbol for pounds
- = symbol for equal to
- \approx symbol for approximately equal to
- \propto symbol for proportional to
- \leq symbol for less than or equal to
- symbol for integration

- α coefficient of thermal expansion (/°C, /°F); angle, in a math equation (degrees, radians)
- β angle, in a math equation (degrees, radians)
- β_c ratio of long side to short side of the column in concrete footing design
- β_1 coefficient for determining stress block height, *a*, based on concrete strength, f'_c ; coefficient for determining stress block height, *c*, in masonry LRFD design
- δ elongation (in, mm)
- δ_P elongation due to axial load (in, mm)
- δ_{s} shear deformation (in, mm)
- δ_{τ} elongation due to change in temperature (in, mm)
- Δ beam deflection (in, mm); an increment
- Δ_{LL} beam deflection due to live load (in, mm)
- Δ_{max} maximum calculated beam deflection (in, mm)
- Δ_{TL} beam deflection due to total load (in, mm)
- Δ_x beam deflection in beam diagrams and formulas (in, mm)
- ΔT change in temperature (°C, °F)
- ε strain (no units)
- ε_t thermal strain (no units)
- ε_{v} yield strain (no units)
- φ diameter symbol;
 angle of twist (degrees, radians);
 resistance factor in LRFD steel design and reinforced concrete design
- ϕ_b resistance factor for flexure in LRFD design
- ϕ_c resistance factor for compression in LRFD design
- ϕ_t resistance factor for tension in LRFD design
- ϕ_v resistance factor for shear in LRFD design
- μ Poisson's ratio;
 - coefficient of static friction
- γ specific gravity of a material (lb/in³, lb/ft³, N/m³,kN/m³);
 angle, in a math equation (degrees, radians);
 shearing strain;
 load factor in LRFD design
- γ_D dead load factor in LRFD design
- γ_L live load factor in LRFD design

 $\theta \qquad \text{angle, in a trig equation, ex. sin} \theta \text{ (degrees, radians);} \\ \text{slope of the deflection of a beam at a point (degrees, radians)}$

 π pi (180°)

- ho radial distance (in, mm); radius of curvature in beam deflection relationships (ft, m); reinforcement ratio in concrete beam design = A_s/bd
- ρ_b balanced reinforcement ratio in masonry design

 $\rho_{balanced}$ balanced reinforcement ratio in concrete beam design

- ρ_g reinforcement ratio in concrete column design = A_{st}/A_g
- ρ_{max} maximum reinforcement ratio allowed in concrete beam design for ductile behavior
- σ engineering symbol for normal stress (axial or bending)
- au engineering symbol for shearing stress
- v_c shear strength in concrete design
- ω load per unit length on a beam (lb/ft, kip/ft, N/m, kN/m) (*see w*); load per unit area (lb/ft², kips/ft², N/m², Pa, MPa)
- ω' load per unit volume (lb/ft, kip/ft, N/m, kN/m) (see γ)
- Σ summation symbol
- Ω safety factor for ASD of steel (unified)
- Ψ relative stiffness of columns to beams in a rigid connection (see G)