ARCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 33

DR. ANNE NICHOLS
FALL 2013

lecture SIX

www.carttalk.com

mechanics of materials

Mechanics of Materials 1 Lecture 6 Architectural Structures ARCH 331 F2009abn

Mechanics of Materials

- external loads and their effect on deformable bodies
- use it to answer question if structure meets requirements of
 - stability and equilibrium
 - strength and stiffness
- · other principle building requirements
 - · economy, functionality and aesthetics

Mechanics of Materials

MECHANICS

MATERIALS

Mechanics of Materials 2 Lecture 5 Foundations Structures ARCH 331 F2008abn

Knowledge Required

- material properties
- member cross sections
- ability of a material to resist breaking
- structural elements that resist excessive
 - deflection
 - deformation



Figure 2.34 An example of torsion on a cantilever beam.

Mechanics of Materials 3

Foundations Structures ARCH 331 F2008abn

Mechanics of Materials 4

Foundations Structures ARCH 331

Problem Solving

1. STATICS:

equilibrium of external forces, internal forces, stresses

cross section properties, deformations and conditions of geometric fit, <u>strains</u>

3. MATERIAL PROPERTIES:

<u>stress-strain relationship</u> for each material obtained from testing

Mechanics of Materials 5 Lecture 5 Foundations Structures ARCH 331 F2008abn

Stress

- stress is a term for the <u>intensity</u> of a force, like a pressure
- · internal or applied
- force per unit area

$$stress = f = \frac{P}{A}$$

Mechanics of Materials 6 Lecture 5 Foundations Structures ARCH 331 F2008abn

Design

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)

Design (cont)

we'd like

$$f_{actual} << F_{allowable}$$

- stress distribution may vary: <u>average</u>
- uniform distribution exists IF the member is loaded axially (concentric)

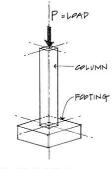


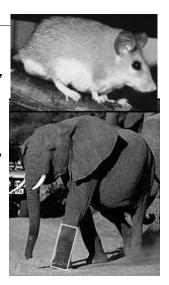
Figure 5.3 Centric loads

Mechanics of Materials 7 Lecture 5 Foundations Structures ARCH 331 F2008abn

acceptance

vs. failure

Mechanics of Materials 8 Lecture 5 Foundations Structures ARCH 331

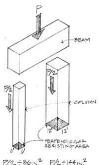

Scale Effect

- model scale
 - material weights by volume, small section areas
- structural scale
 - much more material weight, bigger section areas
- scale for strength is not proportional: γL^3

 $\frac{\gamma L}{L^2} = \gamma L$

Mechanics of Materials 9 Lecture 5

Foundations Structures ARCH 331


F2008abn

Normal Stress (direct)

- <u>normal</u> stress is normal to the cross section
 - stressed area is perpendicular to the load

$$f_{t \, or \, c} = \frac{P}{A}$$

$$(\sigma)$$

GABATER LESS STRESS STRESS

Figure 5.7 Two columns with the same load,

Mechanics of Materials 10 Lecture 5 Foundations Structures ARCH 331 F2008abn

Shear Stress

stress parallel to a surface

$$f_{v} = \frac{P}{A} = \frac{P}{td}$$

$$(\tau_{ave})$$

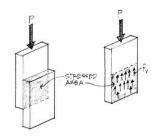


Figure 5.10 Shear stress between two glued blocks

Bearing Stress

 stress on a surface by contact in compression

$$f_p = \frac{P}{A} = \frac{P}{td}$$

$$(\sigma)$$

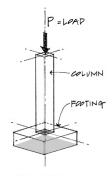


Figure 5.3 Centric loads.

Mechanics of Materials 11 Lecture 5 Foundations Structures ARCH 331 F2008abn

Mechanics of Materials 12 Lecture 5 Foundations Structures ARCH 331

Bending Stress

normal stress caused by bending

$$f_b = \frac{Mc}{I} = \frac{M}{S}$$

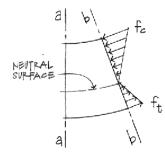
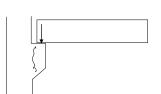


Figure 8.8 Bending stresses on section b-b.

Mechanics of Materials 13 Lecture 5 Foundations Structures ARCH 331 F2008abn

Structures and Shear

what structural elements see shear?

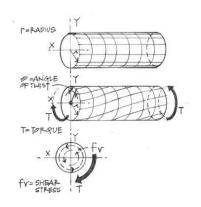

- beams
- bolts

connections

Foundations Structures

ARCH 331

- splices
- slabs
- footings
- walls
 - wind
 - seismic loads



F2008abn

Torsional Stress

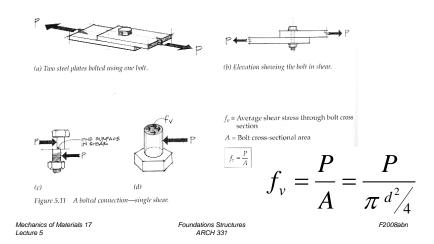
shear stress caused by twisting

Mechanics of Materials 14 Lecture 5 Foundations Structures ARCH 331 F2008abn

Bolts

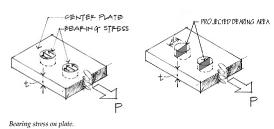
 connected members in tension cause shear stress

 connected members in compression cause bearing stress PEARING STRESS


Bearing stress on plate.

Mechanics of Materials 16 Lecture 5 Foundations Structures ARCH 331 F2008abn

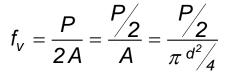
Mechanics of Materials 15 Lecture 5

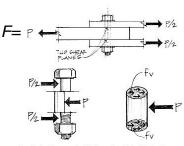

Single Shear

seen when 2 members are connected

Bolt Bearing Stress

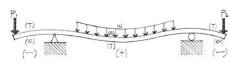
- compression & contact
- projected area


$$f_p = \frac{P}{A_{projected}} = \frac{P}{td}$$


Mechanics of Materials 19 Lecture 5 Foundations Structures ARCH 331 F2008abn

Double Shear

- seen when 3 members are connected
- two areas



Free-body diagram of middle section of the bolt in shear Figure 5.12 A bolted connection in double shear.

Mechanics of Materials 18 Lecture 5 Foundations Structures ARCH 331 F2008abn

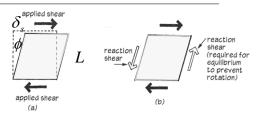
Strain

- materials deform
- axially loaded materials change length
- · bending materials deflect

 $\begin{bmatrix} L & & & \\ & & & \\ L & & & \\ & & & \\ A & & & \\ & &$

- STRAIN:
 - change in length $strain = \varepsilon =$ over length + UNITLESS

Mechanics of Materials 20 Lecture 5 Foundations Structures ARCH 331


Shearing Strain

- deformations with shear
- parallelogram
- change in angles

• stress: τ

• strain: γ

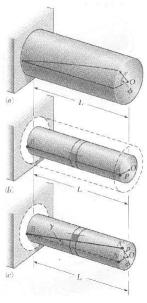
- unitless (radians)

$$\gamma = \frac{\delta_s}{L} = \tan \phi \cong \phi$$

Mechanics of Materials 21 Lecture 5 Foundations Structures ARCH 331 F2008abn

Shearing Strain

- deformations with torsion
- twist
- change in angle of line


• stress: τ

 $\nu = \frac{\rho \phi}{\rho}$

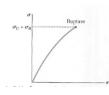
strain:

 $\gamma - -$

- unitless (radians)

Mechanics of Materials 22 Lecture 5 Foundations Structures ARCH 331 F2008abn

Load and Deformation


• for stress, need P & A

• for strain, need δ & L

- how?

TEST with load and measure

– plot P/A vs. ε

Mechanics of Materials 23 Lecture 5

Foundations Structures ARCH 331 F2008abn

Material Behavior

- · every material has its own response
 - 10,000 psi
 - -L = 10 in
 - Douglas Fir vs. steel?

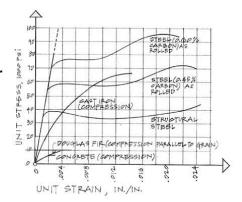


Figure 5.20 Stress-strain diagram for various materials.

Mechanics of Materials 24 Lecture 5 Foundations Structures ARCH 331

Behavior Types

- ductile "necking"
- true stress

$$f = \frac{P}{A}$$

- engineering stress
 - (simplified)

$$f = \frac{P}{A_0}$$

ARCH 331

F2008abn

Mechanics of Materials 25 Lecture 5

Foundations Structures

Stress to Strain

- important to us in f- ε diagrams:
 - straight section
 - LINEAR-ELASTIC
 - recovers shape (no permanent deformation)

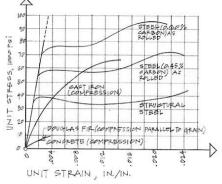
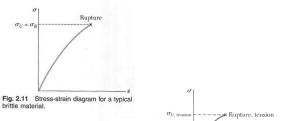



Figure 5.20 Stress-strain diagram for various materials.

Behavior Types

brittle

semi-brittle

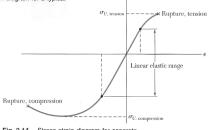


Fig. 2.14 Stress-strain diagram for concrete

Mechanics of Materials 26 Lecture 5

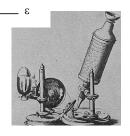
Foundations Structures ARCH 331

F2008abn

Hooke's Law

- straight line has constant slope
- Hooke's Law

$$f = E \cdot \varepsilon$$



• E

Mechanics of Materials 28

Lecture 5

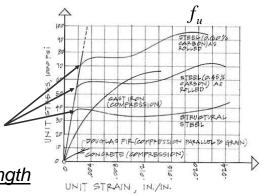
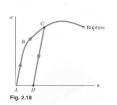
- Modulus of elasticity
- Young's modulus
- units just like stress

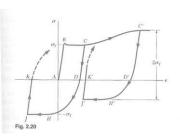
F2008abn

Foundations Structures ARCH 331

Stiffness

- · ability to resist strain
- steels
 - same E
 - differentyield points
 - different<u>ultimate strength</u>

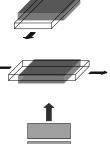

Figure 5.20 Stress-strain diagram for various materials.

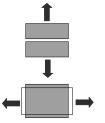
Mechanics of Materials 29 Lecture 5 Foundations Structures ARCH 331 F2008abn

Elastic, Plastic, Fatigue

- elastic springs back
- plastic has permanent deformation
- fatigue caused by reversed loading cycles

Foundations Structures F2008abn ARCH 331


Isotropy & Anisotropy


- ISOTROPIC
 - materials with E same at any direction of loading
 - ex. steel

- materials with different E
 at any direction of loading
- ex. wood is orthotropic

Mechanics of Materials 30 Lecture 5 Foundations Structures ARCH 331

F2008abn

Plastic Behavior

ductile

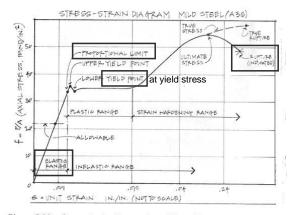


Figure 5.22 Stress-strain diagram for mild steel (A36) with key points highlighted.

Mechanics of Materials 32 Lecture 5 Foundations Structures ARCH 331

Lateral Strain

 or "what happens to the cross section with axial stress"

$$\varepsilon_{x} = \frac{f_{x}}{E}$$

$$f_{y} = f_{z} = 0$$

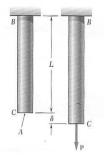
- · strain in lateral direction
 - negative
 - equal for isometric materials

Mechanics of Materials 33 Lecture 5

Foundations Structures ARCH 331

F2008abn

Calculating Strain


from Hooke's law

$$f = E \cdot \varepsilon$$

substitute

$$\frac{P}{A} = E \cdot \frac{\delta}{L}$$

•
$$get \Rightarrow \delta = \frac{PL}{AE}$$

F2008abn

Poisson's Ratio

 constant relationship between longitudinal strain and lateral strain

$$\mu = -\frac{lateral\ strain}{axial\ strain} = -\frac{\varepsilon_{y}}{\varepsilon_{x}} = -\frac{\varepsilon_{z}}{\varepsilon_{x}}$$

$$\varepsilon_{y} = \varepsilon_{z} = -\frac{\mu f_{x}}{E}$$

sign!

$$0 < \mu < 0.5$$

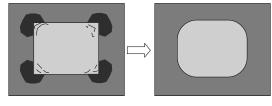
Mechanics of Materials 34 Lecture 5

Foundations Structures ARCH 331

F2008abn

Orthotropic Materials

- non-isometric
- · directional values of E and μ
- ex:
 - plywood
 - laminates
 - polymer composites



Mechanics of Materials 36

Foundations Structures ARCH 331

Stress Concentrations

- why we use f_{ave}
- increase in stress at changes in geometry
 - sharp notches
 - holes
 - corners

Mechanics of Materials 37 Lecture 5

Foundations Structures ARCH 331

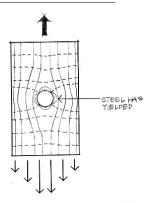
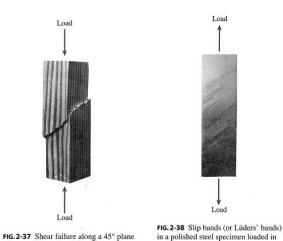



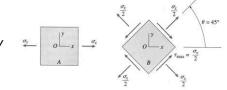
Figure 5.35 Stress trajectories around a hole.

F2008abn

Maximum Stresses

of a wood block loaded in compression

Mechanics of Materials 39 Lecture 5


Foundations Structures ARCH 331

tension

F2008abn

Maximum Stresses

if we need to know where $\max f$ and $f_{\mathbf{v}}$ happen:

$$\theta = 0^{\circ} \rightarrow \cos \theta = 1$$
 $f_{\text{max}} = -$

$$f_{\text{max}} = \frac{P}{A_o}$$

$$\theta = 45^{\circ} \to \cos \theta = \sin \theta = \sqrt{0.5}$$

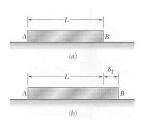
$$f_{v-\text{max}} = \frac{P}{2A_o} = \frac{f_{\text{max}}}{2}$$

Mechanics of Materials 38 Lecture 5

Foundations Structures ARCH 331

Deformation Relationships

- physical movement
 - axially (same or zero)
 - rotations from axial changes



Mechanics of Materials 40 Lecture 5

Foundations Structures ARCH 331

Deformations from Temperature

- atomic chemistry reacts to changes in energy
- solid materials
 - can contract with decrease in temperature
 - · can expand with increase in temperature
- linear change can be measured per degree

Mechanics of Materials 41 Lecture 5

Foundations Structures ARCH 331

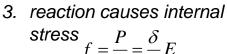
F2008abn

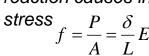
Coefficients of Thermal Expansion

Material	Coefficients (α) [in./in./°F]	
Wood	3.0 x 10 ⁻⁶	
Glass	4.4 x 10 ⁻⁶	COMOPETE BEAMING WALL
Concrete	5.5 x 10 ⁻⁶	JOINT JOINT
Cast Iron	5.9 x 10 ⁻⁶	The state of the s
Steel	6.5 x 10 ⁻⁶	40
Wrought Iron	6.7 x 10 ⁻⁶	40
Copper	9.3 x 10 ⁻⁶	and the second second
Bronze	10.1 x 10 ⁻⁶	
Brass	10.4 x 10 ⁻⁶	
Aluminum	12.8 x 10 ⁻⁶	
Mechanics of Materials 43 Lecture 5	Foundations Structures ARCH 331	F2008abn

Thermal Deformation

- α the rate of strain per degree
- UNITS:
- length change: $\delta_T = \alpha (\Delta T) L$
- thermal strain:
 - no stress when movement allowed


Mechanics of Materials 42 Lecture 5


Foundations Structures

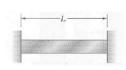
F2008abn

Stresses and Thermal Strains

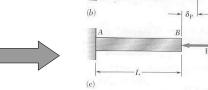
- if thermal movement is restrained stresses are induced
- 1. bar pushes on supports
- 2. support pushes back

Mechanics of Materials 44

Foundations Structures


F2008abn

B


(b)

Superposition Method

- can remove a support to make it look determinant
- replace the support with a reaction
- enforce the geometry constraint

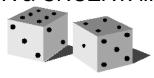
Mechanics of Materials 45 Lecture 5

Mechanics of Materials 47

Lecture 5

Foundations Structures ARCH 331

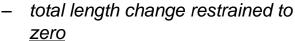
F2008abn

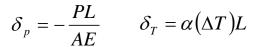

Design of Members

- beyond allowable stress...
- materials aren't uniform 100% of the time
 - ultimate strength or capacity to failure may be different and some strengths hard to test for

Foundations Structures

ARCH 331

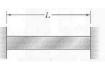

RISK & UNCERTAINTY


 $f_u = \frac{P_u}{\Lambda}$

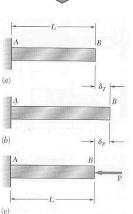
F2008abn

Superposition Method

constraint:
$$\delta_P + \delta_T = 0$$



sub:
$$-\frac{PL}{AE} + \alpha (\Delta T)L = 0$$


$$f = -\frac{P}{A} = -\alpha (\Delta T)E$$

Mechanics of Materials 46 Lecture 5

Foundations Structures ARCH 331

Factor of Safety

- accommodate uncertainty with a safety factor: allowable load = $\frac{ultimate\ load}{}$
- with linear relation between load and stress: ultimate load ultimate stress allowable load allowable stress

Mechanics of Materials 48 Lecture 5

Foundations Structures ARCH 331

Load and Resistance Factor Design

- · loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
 - UNCERTAINTY

$$R_u = \gamma_D R_D + \gamma_L R_L \le \phi R_n$$

 ϕ - resistance factor

 γ - load factor for (D)ead & (L)ive load

Mechanics of Materials 49 Lecture 5 Foundations Structures ARCH 331