
ARCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331 DR. Anne Nichols Fall 2013

lecture

http://nisee.berkeley.edu/godde

F2009abr

Spirally reinforced

column

concrete construction: materials & beams

Concrete Beams 1 Lecture 22 Architectural Structures ARCH 331

Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Beams 3 Lecture 22

ARCH 331

http:// nisee.berkeley.edu/godden F2008abn

Tied

column

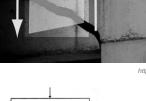
Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c

Concrete Beams 2 Lecture 22 Foundations Structures ARCH 331 F2008abn

Concrete Beams

- types
 - reinforced
 - precast
 - prestressed
- shapes
 - rectangular, I
 - T, double T's, bulb T's
 - box
 - spandrel

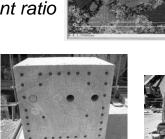

Concrete Beams 4 Lecture 22

Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°
- bearing
 - crushing

http://urban.arch.virginia.edu

Concrete Beams 5 Lecture 22


Foundations Structures ARCH 331

F2008abr

Concrete

- hydration
 - chemical reaction
 - workability
 - water to cement ratio
 - mix design
- fire resistant
- cover for steel
- creep & shrinkage

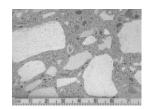
Concrete Beams 7 Lecture 22

Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - types I V
 - aggregate
 - course & fine
 - water
 - admixtures
 - air entraining
 - superplasticizers

Concrete Beams 6 Foundations Structures Lecture 22 ARCH 331

- placement (not pouring!)
- vibrating
- screeding
- floating
- troweling
- curing


Concrete Beams 8

Lecture 22

finishing

Foundations Structures ARCH 331

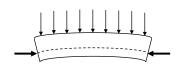
F2008abn

Foundations Structures ARCH 331

F2008abr

Reinforcement

- deformed steel bars (rebar)
 - Grade 40, $F_v = 40$ ksi
 - Grade 60, $F_y = 60$ ksi most common


Foundations Structures

ARCH 331

- Grade 75, $F_v = 75$ ksi
- US customary in # of 1/8" ϕ
- · longitudinally placed
 - bottom
 - top for compression reinforcement

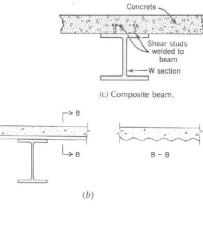
- Reinforcement
- prestressing strand
- post-tensioning
- stirrups
- detailing
 - development length
 - anchorage
 - splices


```
Concrete Beams 10
Lecture 22
```

Foundations Structures ARCH 331

http:// nisee.berkeley.edu/godden F2008abn

Composite Beams

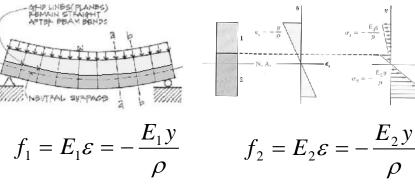

- concrete
 - in compression
- steel

Concrete Beams 9

Lecture 22

- in tension
- shear studs

Concrete Beams 11 Lecture 22


Foundations Structures ARCH 331

F2008abn

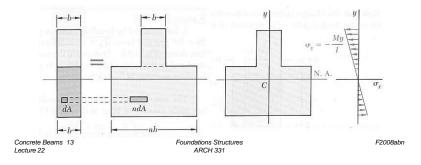
F2008abr

Behavior of Composite Members

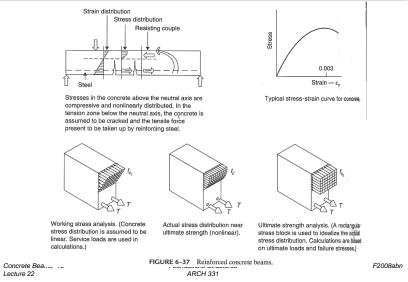
- plane sections remain plane
- stress distribution changes

Concrete Beams 12 Lecture 22

Foundations Structures ARCH 331

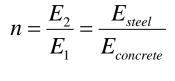

ρ F2008abn

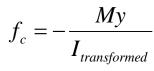
Transformation of Material

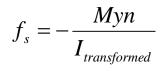

• n is the ratio of E's

$$\eta = \frac{E_2}{E_1}$$

 effectively widens a material to get same stress distribution

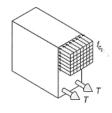



Reinforced Concrete - stress/strain



Stresses in Composite Section

- with a section transformed to one material, new l
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by n


Concrete Beams 14 Lecture 22

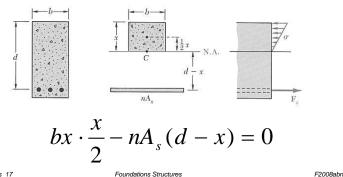
Foundations Structures ARCH 331

F2008abr

Reinforced Concrete Analysis

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure

Lecture 22


Concrete Beams 16 Lecture 22

Foundations Structures ARCH 331

F2008abn

Location of n.a.

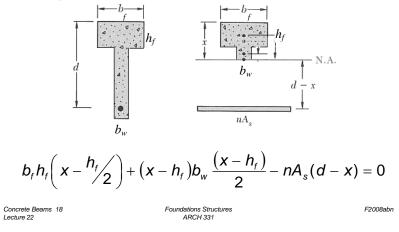
- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

ARCH 331

Concrete Beams 17 Lecture 22

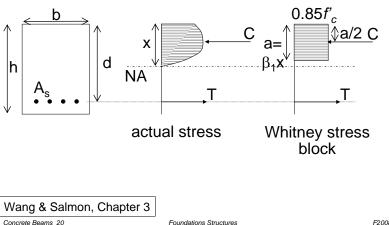
ACI Load Combinations*

- 1.4D
- $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.5W)$
- $1.2D + 1.0W + 1.0L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E


*can also use old ACI factors

Concrete Beams 19 Lecture 22

Foundations Structures ARCH 331 F2008abn


T sections

• n.a. equation is different if n.a. below flange

Reinforced Concrete Design

• stress distribution in bending

ARCH 331

Lecture 22

Force Equations

- $C = 0.85 f'_{c} ba$
- $T = A_s f_y$
- where
 - f'_c = concrete compressive strength
 - -a = height of stress block
 - $-\beta_1$ = factor based on f'_c
 - -x = location to the n.a.
 - b = width of stress block
 - $f_y =$ steel yield strength
- A_s = area of steel reinforcement

Over and Under-reinforcement

- over-reinforced
 steel won't yield
- under-reinforced
 - steel will yield
- reinforcement ratio

$$-\rho = \frac{A_s}{bd}$$

- use as a design estimate to find A_s , b, d
- max ρ is found with $\varepsilon_{\text{steel}} \ge 0.004$ (not ρ_{bal})

 $- * With \mathcal{E}_{\text{Steel}} \geq 0.005 \phi = 0.9$

0.85*f*'_c

a=β₁×

\$a/2

F2008abn

С

http://people.bath.ac.uk/abstji/concrete_video/virtual_lab.htm

F2008abr

Equilibrium

- T = C
- *M_n* = *T*(*d*-*a*/2)
 d = *depth* to the steel n.a.

• with A_s $-a = \frac{A_s f_y}{0.85 f' h}$

$$-M_{u} \le \phi M_{n} \quad \phi = 0.9 \text{ for flexure}^{*}$$
$$-\phi M_{n} = \phi T(d-a/2) = \phi A_{s}f_{v}(d-a/2)$$

Concrete Beams 22 Lecture 22 Foundations Structures ARCH 331 F2008abr

 $0.85f'_{c}$

a=β₁x

A_s for a Given Section

- several methods
 - guess a and iterate

1. guess a (less than n.a.)
2.
$$A_s = \frac{0.85 f'_c ba}{f_y}$$

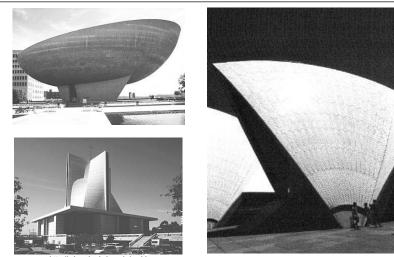
3. solve for a from $M_u = \phi A_s f_y$ (d-a/2)
 $a = 2 \left(d - \frac{M_u}{\phi A_s f_y} \right)$
4. repeat from 2. until a from 3. matches a in 3.

4. repeat from 2. until a from 3. matches a in 2.

Concrete Beams 24 Lecture 22 Foundations Structures ARCH 331 F2008abn

A_s for a Given Section (cont)

- · chart method
 - Wang & Salmon Fig. 3.8.1 R_n vs. ρ


1. calculate $R_n = \frac{M_n}{hd^2}$

- 2. find curve for f_c and f_v to get ρ 3. calculate As and a
- simplify by setting h = 1.1d

Concrete Beams	25
Lecture 22	

Foundations Structures ARCH 331

Shells

ARCH 331

eee herkelev Concrete Beams Foundations Structures Lecture 22

F2008abr

F2008abn

Reinforcement

- min for crack control
- required (bd) $A_{\rm s} =$
- not less than $an A_s = \frac{200}{f_v} (bd)$
- $A_{\text{s-max}}: a = \beta_1(0.375d)$
- typical cover - 1.5 in, 3 in with soil
- bar spacing

cover spacing

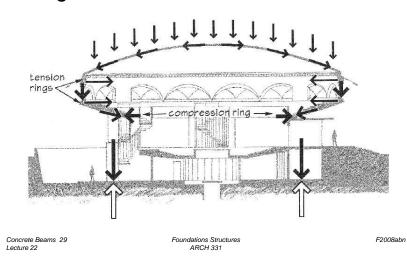
F2008abr

Concrete Beams 26 Lecture 22

Foundations Structures ARCH 331

Annunciation Greek Orthodox Church

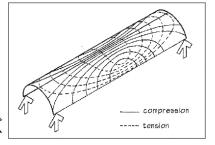
• Wright, 1956



Concrete Beams 28 Lecture 22

Foundations Structures http://www.bluffton.edu/~sullivanm F2008abn ARCH 331


Annunciation Greek Orthodox Church


• Wright, 1956

Cylindrical Shells

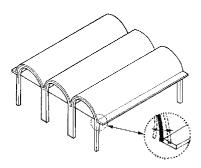
- can resist tension
- shape adds "depth"

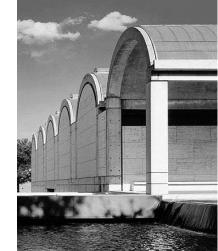
not vaults barrel shells

TRANSVERSE FOLDING

Concrete Beams 30 Lecture 22 Foundations Structures ARCH 331

Kimball Museum, Kahn 1972

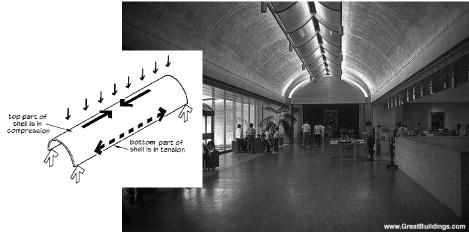

Concrete Beams 31 Lecture 22


Foundations Structures ARCH 331 F2008abn

Kimball Museum, Kahn 1972

FREE FORM

• outer shell edges

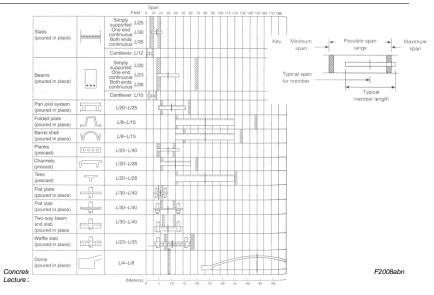


Concrete Beams 32 Lecture 22 Foundations Structures ARCH 331 F2008abn

F2008abn

Kimball Museum, Kahn 1972

• skylights at peak



Concrete Beams 33 Lecture 22

Foundations Structures ARCH 331

F2008abn

Approximate Depths

