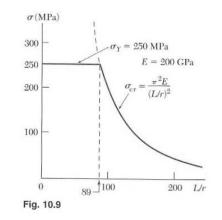
ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331 DR. Anne Nichols Fall 2013

Car-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday)



steel construction: columns & tension members

Steel Columns & Tension 1 Lecture 20 Architectural Structures ARCH 331

Design Methods (revisited)

- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Structural Steel

- standard rolled shapes (W, C, L, T)
- tubing
- pipe

built-up

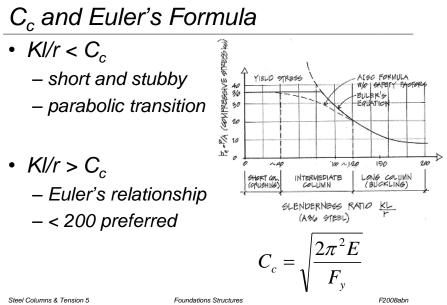
Steel Columns & Tension 2 Lecture 20

Foundations Structures ARCH 331

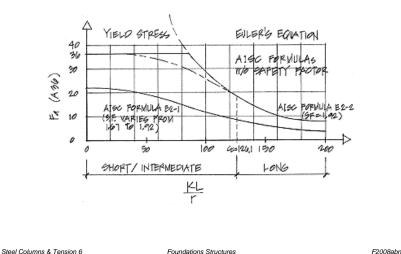
F2008abn

- Allowable Stress Design (ASD)
- AICS 9th ed

$$F_a = \frac{f_{critical}}{F.S.} = \frac{12\pi^2 E}{23(\frac{Kl}{r})^2}$$


- slenderness ratio $\frac{Kl}{r}$
 - for kl/r $\geq C_c$ = 126.1 with F_y = 36 ksi = 107.0 with F_v = 50 ksi

Steel Columns & Tension 3 Lecture 20 Foundations Structures ARCH 331 F2008abn

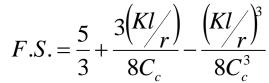

F2009abn

Steel Columns & Tension 4 Lecture 20 Foundations Structures ARCH 331 F2008abn

1

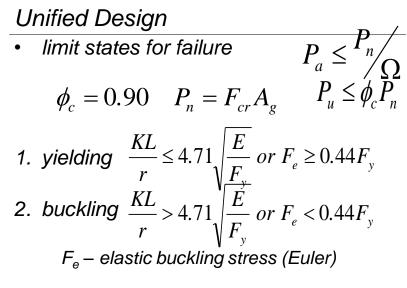
C_c and Euler's Formula

ARCH 331


Steel Columns & Tension Lecture 20 dations Structures ARCH 331

Short / Intermediate

$$L_{e}/r < C_{c}$$


$$F_{a} = \left[1 - \frac{\left(\frac{Kl}{r}\right)^{2}}{2C_{c}^{2}}\right] \frac{F_{y}}{F.S.}$$

- where

Steel Columns & Tension 7 Lecture 20 Foundations Structures ARCH 331

F2008abn

Steel Columns & Tension 8 Lecture 17

Lecture 20

Foundations Structures ARCH 331 Su2011abn

Unified Design

•
$$P_n = F_{cr}A_g$$

- for $\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$ $F_{cr} = \left\lfloor 0.658^{\frac{F_y}{F_e}} \right\rfloor F_y$
- for $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ $F_{cr} = 0.877 F_e$
- where $F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$

Foundations Structures

ARCH 331

Procedure for Design

2.calculate KL/r

Steel Columns & Tension 9

Lecture 17

- biggest of KL/r with respect to x axes and y axis
- 3.find $F_a \underline{\text{or}} F_{cr}$ from appropriate equations
 - or find a chart

4.compute
$$P_{allowable} = F_a A$$
 $(P_n / \Omega = F_{cr} A_g)$
or $P_n = F_{cr} A_g$
• or find $f_{actual} = P/A$

Steel Columns & Tension 11 Lecture 17 Su2011abn

Su2011abn

Procedure for Analysis

- 1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
- 2. find $F_a \underline{\text{or}} F_{cr}$ from appropriate equation
 - tables are available
- 3. compute $P_{allowable} = F_a \cdot A \text{ or } P_n = F_{cr}A_g$ • or find $f_{actual} = P/A$
- 4. is $P \leq P_{allowable} (P_a \leq P_n/\Omega)?$ or is $P_u \leq \phi P_n?$
 - yes: ok
 - no: insufficient capacity and no good

Steel Columns & Tension 10 Lecture 17 Foundations Structures ARCH 331 Su2011abn

Procedure for Design (cont'd)

- 5. is $P \leq P_{\text{allowable}}$ ($P_a \leq P_n/\Omega$)? or is $P_u \leq \phi P_n$?
 - yes: ok
 - no: pick a bigger section and go back to step 2.
- 6. check design efficiency

• percentage of stress =
$$\frac{P_r}{P_c} \cdot 100\%$$

- if between 90-100%: good
- if < 90%: pick a smaller section and go back to step 2.

Steel Columns & Tension 12 Lecture 17 Su2011abn

Column Charts, F_a (pg. 361-364)

Table 10.1 Allowable stress for compression members ($F_v = 36$ ksi and $F_v = 250$ MPa).

$\frac{KL}{r}$	F _a (ksi)	F _a (MPa)	$\frac{KL}{r}$	F_a (ksi)	F _a (MPa)	$\frac{KL}{r}$	F _a (ksi)	F _a (MPa)
1	21.56	148.7	41	19.11	131.8	81	15.24	105.1
2	21.52	148.4	42	19.03	131.2	82	15.13	104.3
3	21.48	148.1	43	18.95	130.7	83	15.02	103.6
4	21.44	147.8	44	18.86	130.0	84	14.90	102.7
5	21.39	147.5	45	18.78	129.5	85	14.79	102.0
6	21.35	147.2	46	18.70	128.9	86	14.67	101.1
7	21.30	146.9	47	18.61	128.3	87	14.56	100.4
8	21.25	146.5	48	18.53	127.8	88	14.44	99.6
9	21.21	146.2	49	18.44	127.1	89	14.32	98.7
10	21.16	145.9	50	18.35	126.5	90	14.20	97.9
11	21.10	145.5	51	18.26	125.9	91	14.09	97.2
12	21.05	145.1	52	18.17	125.3	92	13.97	96.3
13	21.00	144.8	53	18.08	124.7	93	13.84	95.4
14	20.95	144.5	54	17.99	124.0	94	13.72	94.6
15	20.89	144.0	55	17.90	123.4	95	13.60	93.8
16	20.83	143.6	56	17.81	122.8	96	13.48	92.9
17	20.78	143.3	57	17.71	122.1	97	13.35	92.0
18	20.72	142.9	58	17.62	121.5	98	13.23	91.2
Columns & Tension 11 re 20				oundations S ARCH 3				

Column Charts

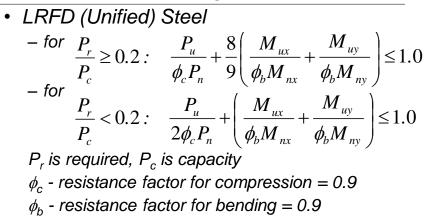
F _y = 50 ksi		A	Table 4-1 (continued)Available Strength inAxial Compression, kips									
					wsn	apes				W12		
Shape Wt/ft Design		W12× Constant										
		96		87		79		72		65		
		P_n/Ω_c	\$_cP_n	P_n/Ω_c	\$cPn	P_n/Ω_c	¢ _c P _n	P_n/Ω_c	\$cPn	P_n/Ω_c	ф _с Р _п	
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	0	844	1270	766	1150	694	1040	633	951	571	859	
	6	811	1220	735	1110	667	1000	607	913	548	824	
5	7	800	1200	725	1090	657	987	598	899	540	811	
ţ	8	787	1180	713	1070	646	971	588	884	531	798	
s of gyration r _y	9	772	1160	699	1050	634	952	577	867	520	782	
5	10	756	1140	685	1030	620	932	565	849	509	765	
	11	739	1110	669	1010	606	910	551	828	497	747	

Column Charts, ϕF_{cr}

Available Critical Stress, $\phi_c F_{cr}$, for Compression Members, ksi ($F_y = 50$ ksi and $\phi_c = 0.90$)

KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$	KL/r	$\phi_c F_{cr}$
1	45.0	41	39.8	81	27.9	121	15.4	161	8.72
2 3	45.0	42	39.6	82	27.5	122	15.2	162	8.61
3	45.0	43	39.3	83	27.2	123	14.9	163	8.50
4	44.9	44	39.1	84	26.9	124	14.7	164	8.40
5	44.9	45	38.8	85	26.5	125	14.5	165	8.30
6	44.9	46	38.5	86	26.2	126	14.2	166	8.20
7	44.8	47	38.3	87	25.9	127	14.0	167	8.10
8	44.8	48	38.0	88	25.5	128	13.8	168	8.00
9	44.7	49	37.8	89	25.2	129	13.6	169	7.91
10	44.7	50	37.5	90	24.9	130	13.4	170	7.82
11	44.6	51	37.2	91	24.6	131	13.2	171	7.73
12	44.5	52	36.9	92	24.2	132	13.0	172	7.64
13	44.4	53	36.6	93	23.9	133	12.8	173	7.55
14	44.4	54	36.4	94	23.6	134	12.6	174	7.46
15	44.3	55	36.1	95	23.3	135	12.4	175	7.38
16	44.2	56	35.8	96	22.9	136	12.2	176	7.29
17	44.1	57	35.5	97	22.6	137	12.0	177	7.21
18	43.9	58	35.2	98	22.3	138	11.9	178	7.13
19	43.8	59	34.9	99	22.0	139	11.7	179	7.05
20	43.7	60	34.6	100	21.7	140	11.5	180	6.97
21	43.6	61	34.3	101	21.3	141	11.4	181	6.90
22	43.4	62	34.0	102	21.0	142	11.2	182	6.82
23	43.3	63	33.7	103	20.7	143	11.0	183	6.75
24	43.1	64	33.4	104	20.4	144	10.9	184	6.67
25	43 N	65	33.0	105	20.1	145	10.7	185	6 60
eel Columns cture 20	& Tension 1	4		ions Structure RCH 331	es			S2012	

Beam-Column Design

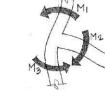

• moment magnification (P-Δ)

$$M_{u} = B_{1}M_{max-factored} B_{1} = \frac{C_{m}}{1 - (P_{u}/P_{e1})}$$

 $C_{m} - \text{modification factor for end conditions}$ = 0.6 - 0.4(M₁/M₂) or 0.85 restrained, 1.00 unrestrained $P_{e1} - \text{Euler buckling strength} \quad P_{e1} = \frac{\pi^{2} EA}{\left(\frac{Kl}{r}\right)^{2}}$

Steel Columns & Tension 15 Lecture 17 Foundations Structures ARCH 331 Su2011abn

Beam-Column Design



Steel Columns & Tension 16 Lecture 17

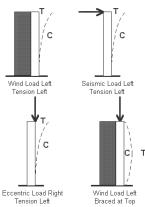
Foundations Structures ARCH 331

Rigid Frame Design (revisited)

- columns in frames
 - ends can be "flexible"
 - stiffness affected by beams and column = EI/L

Su2011abr

- for the joint
- $G = \Psi = \frac{\Sigma \frac{EI}{l_c}}{\Sigma \frac{EI}{}}$ • I_c is the column length of each column
 - I_{h} is the beam length of each beam
 - measured center to center

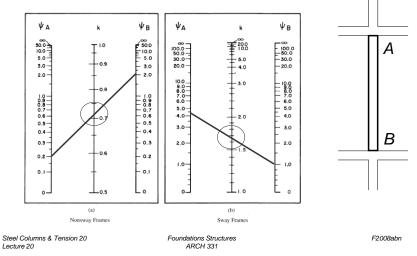

Steel Columns & Tension 19 Lecture 20

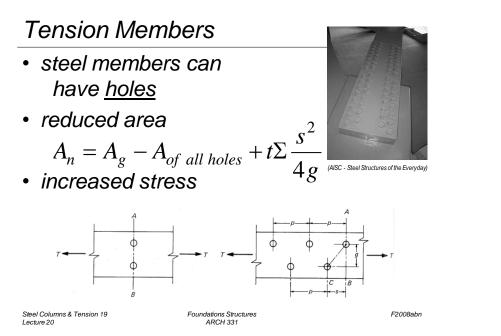
Foundations Structures ARCH 331

F2008abn

Design Steps Knowing Loads (revisited)

- 1. assume limiting stress
 - buckling, axial stress, combined stress
- 2. solve for r, A or S
- 3. pick trial section
- 4. analyze stresses
- 5. section ok?
- 6. stop when section is ok

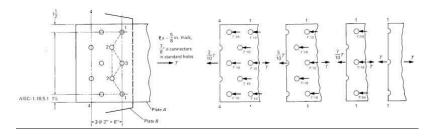

Steel Columns & Tension 18 Lecture 20


Foundations Structures ARCH 331

F2008abn

Rigid Frame Design (revisited)

column effective length, k



 $P_a \leq \frac{P_n}{\Omega} \quad P_u \leq \phi_t P_n$

Effective Net Area

- likely path to "rip" across
- · bolts divide transferred force too
- shear lag $A_e \leq A_n U$

Steel Columns & Tension 20 Lecture 20 Foundations Structures ARCH 331 F2008abn

Tension Members

- limit states for failure
- 1. yielding $\phi_t = 0.90$ $P_n = F_v A_g$

2. rupture *
$$\phi_t = 0.75$$
 $P_n = F_u A_e$
 A_g - gross area
 A_e - effective net area
(holes 3/16" + d)
 F_u = the tensile strength
of the steel (ultimate)
Steel Columns & Tension 22
 $F_{ucture 17}$
 $F_{ucture 1$