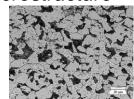
ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS FALL 2013

lecture


materials & beams

Architectural Structures Lecture 18 ARCH 331

F2009abn

Steel Materials

- smelt iron ore
- add alloying elements
- heat treatments
- iron, carbon
- microstructure

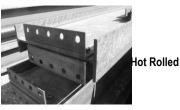
A36 steel, JOM 1998

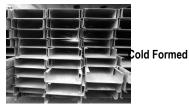
AISC

F2008abn

Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 2005


Steel Beams 2 Lecture 18


Foundations Structures ARCH 331

F2008abr

Steel Materials

- cast into billets
- hot rolled
- cold formed
- residual stress
- corrosion-resistant "weathering" steels
- stainless

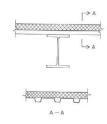
AISC Foundations Structures

ARCH 331

Steel Beams 4

Steel Materials

- steel grades
 - ASTM A36 carbon
 - · plates, angles
 - $F_v = 36 \text{ ksi } \& F_u = 58 \text{ ksi}$


- some beams
- $F_v = 60 \text{ ksi } \& F_u = 75 \text{ ksi}$
- ASTM A992 for building framing
 - · most beams
 - $F_v = 50 \text{ ksi } \& F_u = 65 \text{ ksi}$

Flange plate

F2008abn

Structural Steel

- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking

Foundations Structures ARCH 331

(d) Welded girder.

top chord-

F2008abn

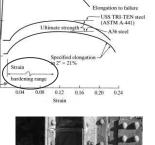
Groove welds

(e) Welded box girder.

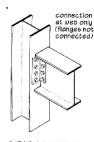
- · high strength to weight ratio
- elastic limit yield (F_v)
- inelastic plastic
- ultimate strength (F,)
- ductile
- · strength sensitive to temperature
- can corrode
- fatigue

Steel Beams 6

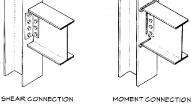
Lecture 18

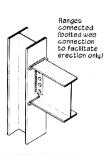

ARCH 331

Winnepeg DO7

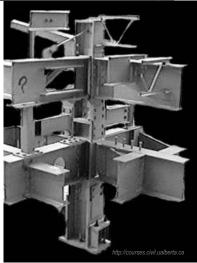

strain hardening

Foundations Structures

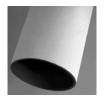



Steel Construction

- welding
- bolts



Lecture 18



Foundations Structures ARCH 331

Steel Construction

- fire proofing
 - cementicious spray
 - encasement in gypsum
 - intumescent expands with heat
 - sprinkler system

Lecture 18

Foundations Structures ARCH 331

F2008abn

Unified Steel Design

ASD

$$R_a \leq \frac{R_n}{\Omega}$$

– bending (braced)

 $\Omega = 1.67$

– bending (unbraced*)

 Ω = 1.67

- shear

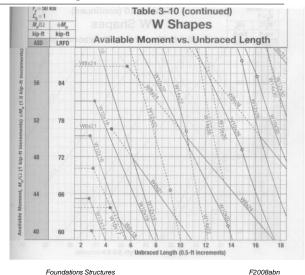
 $\Omega = 1.5 \text{ or } 1.67$

- shear (bolts & welds) $\Omega = 2.00$

- shear (welds)

 Ω = 2.00

* flanges in compression can buckle


Steel Beams 10 Lecture 18

Foundations Structur
ARCH 331

F2008abn

Unified Steel Design

 braced vs. unbraced

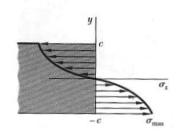
LRFD

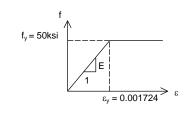
- · loads on structures are
 - not constant

- happen more or less often
- UNCERTAINTY

$$R_u = \gamma_D R_D + \gamma_L R_L \le \phi R_n$$

 ϕ - resistance factor


γ - load factor for (D)ead & (L)ive load


Steel Beams 12 Lecture 18

Foundations Structures ARCH 331 F2008abr

LRFD Steel Beam Design

- limit state is yielding all across section
- outside elastic range
- load factors & resistance factors

Steel Beams 13 Lecture 18 Foundations Structures ARCH 331 F2008abn

Beam Design Criteria (revisited)

- · strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection
 - stability
- superpositioning
 - use of beam charts
 - elastic range only!
 - "add" moment diagrams
 - "add" deflection CURVES (not maximums)

 $\begin{array}{c} A \\ B \\ E \\ \hline \\ C \\ D \\ \hline \\ B \\ E \\ \hline \\ C \\ D \\ \hline \\ A \\ A \\ B \\ E \\ \hline \\ C \\ D \\ D \\ C \\$

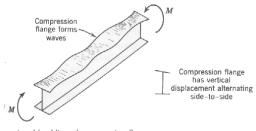
F2008abn

LRFD Load Combinations

ASCE-7 (2005)

$$1.4(D + F)$$

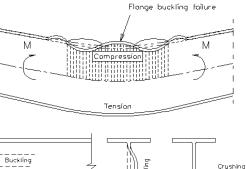
 $0.5(L_r \text{ or } S \text{ or } R)$

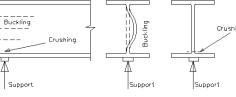

- $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$
- $1.2D + 1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.6W + 1.6H
- 0.9D + 1.0E + 1.6H

Steel Beams 14 Lecture 18 Foundations Structures ARCH 331 F2008abn

Steel Beams

- · lateral stability bracing
- local buckling stiffen, or bigger I_{v}


Local buckling of compression flange


Steel Beams 16 Lecture 18 Foundations Structures ARCH 331

Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - "crippling"

Steel Beams 17

F2008abn

Foundations Structures

Local Buckling

flange

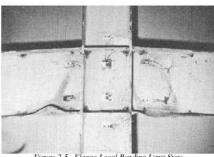
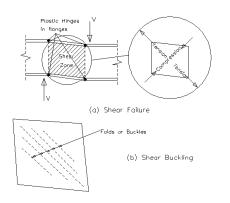


Figure 2-5. Flange Local Bending Limit State (Beedle, L.S., Christopher, R., 1964)

web


Steel Beams 18 Lecture 18


Foundations Structures ARCH 331

F2008abn

Shear in Web

- panels in plate girders or webs with large shear
- · buckling in compression direction
- add stiffeners

Foundations Structures F2008abn ARCH 331

Shear in Web

· plate girders and stiffeners

Steel Beams 20 Lecture 18

Foundations Structures ARCH 331

http://nisee.berkeley.edu/godden F2008abn

Steel Beams

bearing

- provide adequate area
- prevent local yield of flange and web

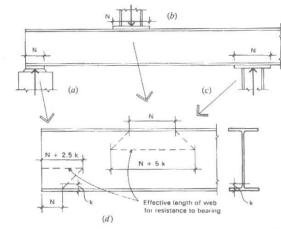


Figure 9.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).

Steel Beams 21

Foundations Structures ARCH 331 F2008abn

 $\Sigma \gamma_i R_i = M_u \le \phi_b M_n = 0.9 F_v Z$

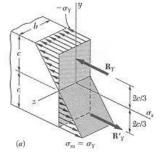
M,, - maximum moment

LRFD - Flexure

 ϕ_b - resistance factor for bending = 0.9

 M_n - nominal moment (ultimate capacity)

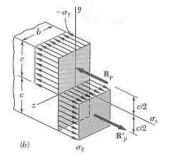
 F_v - yield strength of the steel

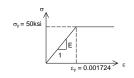

Z - plastic section modulus*

Steel Beams 22 Lecture 18 Foundations Structures ARCH 331 F2008abn

Internal Moments - at yield

· material hasn't failed

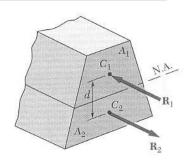

$$M_{y} = \frac{I}{c} f_{y} = \frac{bh^{2}}{6} f_{y}$$


$$=\frac{b(2c)^2}{6}f_y = \frac{2bc^2}{3}f_y$$

Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{tension} = A_{compression}$

$$M_{p} = bc^{2} f_{y} = \frac{3}{2} M_{y}$$



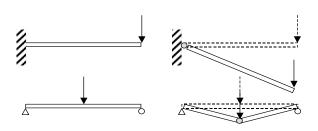
l Beams 23 Foundations Structures F2008abr ure 18 ARCH 331 Steel Beams 24 Lecture 18

Foundations Structures ARCH 331 F2008abr

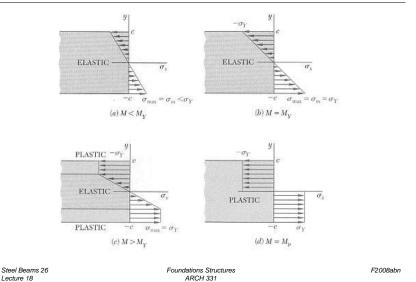
n.a. of Section at Plastic Hinge

- · cannot guarantee at centroid
- $f_{y}.A_1 = f_{y}.A_2$
- moment found from yield stress times moment area

$$M_p = f_y A_1 d = f_y \sum_{n,a} A_i d_i$$


Steel Beams 25 Lecture 18

Foundations Structures


F2008abn

Plastic Hinge Examples

stability can be effected

Plastic Hinge Development

Plastic Section Modulus

shape factor, k

Lecture 18

= 3/2 for a rectangle

 \approx 1.1 for an I

• plastic modulus, Z

Foundations Structures ARCH 331

F2008abn

Steel Beams 28 Lecture 18

Foundations Structures ARCH 331

LRFD - Shear (compact shapes)

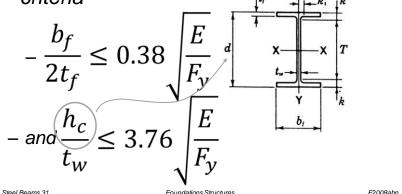
$$\Sigma \gamma_i R_i = V_u \le \phi_v V_n = 1.0(0.6 F_{yw} A_w)$$

V_u - maximum shear

 ϕ_{v} - resistance factor for shear = 1.0

 V_n - nominal shear

 F_{vw} - yield strength of the steel in the web


 A_w - area of the web = $t_w d$

Steel Beams 29 Lecture 18 Foundations Structures ARCH 331 F2008abn

Compact Sections

- plastic moment can form before any buckling
 TABLE A.3 Properties of W Shapes
- criteria

Lecture 18

ARCH 331

LRFD - Flexure Design

· limit states for beam failure

1. yielding

 $L_p = 1.76r_y \left| \frac{r_y}{E} \right|$

- 2. lateral-torsional buckling*
- 3. flange local buckling
- 4. web local buckling
- minimum M_n governs

$$\sum \gamma_i R_i = M_u \le \phi_b M_n$$

Steel Beams 30 Lecture 18 Foundations Structures ARCH 331 F2008abn

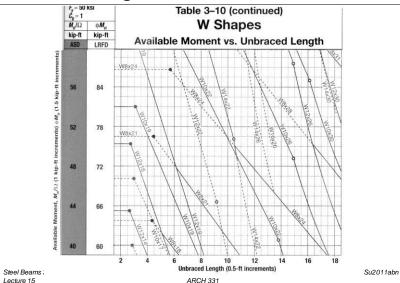
Lateral Torsional Buckling

$$M_n = C_b \begin{bmatrix} moment \ based \ on \end{bmatrix} \le M_p$$

$$C_b = \frac{12.5M_{max}}{2.5M_{max} + 3M_A + 4M_B + 3M_C}$$

 $C_b = modification factor$

 M_{max} - |max moment|, unbraced segment


 M_{Δ} - [moment], 1/4 point

 $M_{\rm B} = |{\it moment}|$, center point

 $M_C = |moment|$, 3/4 point

Steel Beams 32 Lecture 18 undations Structures ARCH 331

Beam Design Charts

Design Procedure (revisited)

- 1. Know unbraced length, material, design method (Ω, ϕ)
- 2. Draw V & M, finding M_{max}
- 3. Calculate $Z_{\text{req'd}}$ $(M_a \leq M_n/\Omega)$ $(M_u \leq \phi_b M_n)$
- 4. <u>Choose (economical) section from section or beam capacity charts</u>

Charts & Deflections

- beam charts
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is NOT included in M_n
- deflections
 - no factors are applied to the loads
 - often governs the design

Steel Beams 34 Lecture 18 Foundations Structures ARCH 331 F2008abn

Beam Charts by S_x (Appendix A)

Table 11 Listing of W Shapes in Descending Order of S, for Beam Design

S _x —US (in. ³)	Section	S_x —SI $(10^3 \times \text{mm}^3)$	S_x —US (in.3)	Section	S_x —SI (10 ³ × mm		
448	W33×141	7350	188	W18×97	3080		
439	W36×135	7200					
411	W27 × 146	6740	176	W24×76	2890		
			175	W16×100	2870		
406	W33 × 130	6660	173	W14×109	2840		
380	W30 × 132	6230	171	W21×83	2800		
371	W24 × 146	6080	166	W18 × 86	2720		
			157	W14×99	2570		
359	W33 × 118	5890	155	W16 × 89	2540		
355	W30 × 124	5820	0049411	0.0000000000000000000000000000000000000	00000000		
			154	W24 × 68	2530		
329	W30 × 116	5400	151	W21 × 73	2480		
329	W24 × 131	5400	146	W18×76	2390		
329	W21 × 147	5400	143	W14×90	2350		
299	W30×108	4900	140	W21 × 68	2300		
299	W27 × 114	4900	134	W16×77	2200		

Steel Beams 35 Foundations Structures Su2011abn
Lecture 15 ARCH 331

Beam Charts by Z_x

		$F_y = 36 \text{ ksi}$			$F_y = 50 \text{ ksi}$									
Designation	Z_x in. ³	L _p	L _r ft	M _p kip-ft	M, kip-ft	L _p	L, ft	M _p kip-ft	M _r kip-ft	r _y in. b _f /2	$b_f/2t_f$	h/t _w	X ₁ ksi	$X_2 \times 10^6$ $(1/\text{ksi})^2$
W 33 × 141	514	10.1	30.1	1,542	971	8.59	23.1	2,142	1,493	2.43	6.01	49.6	1,800	17,800
W 30 × 148	500	9.50	30.6	1,500	945	8.06	22.8	2,083	1,453	2.28	4.44	41.6	2,310	6,270
W 24 × 162	468	12.7	45.2	1,404	897	10.8	32.4	1,950	1,380	3.05	5.31	30.6	2,870	2,260
W 24 × 146	418	12.5	42.0	1,254	804	10.6	30.6	1,742	1,237	3.01	5.92	33.2	2,590	3,420
W 33 × 118	415	9.67	27.8	1,245	778	8.20	21.7	1,729	1,197	2.32	7.76	54.5	1,510	37,700
W 30 × 124	408	9.29	28.2	1,224	769	7.88	21.5	1,700	1,183	2.23	5.65	46.2	1,930	13,500
W 21 × 147	373	12.3	46.4	1,119	713	10.4	32.8	1,554	1.097	2.95	5.44	26.1	3,140	1,590
W 24 × 131	370	12.4	39.3	1,110	713	10.5	29.1	1,542	1.097	2.97	6.70	35.6	2,330	5,290
W 18 × 158	356	11.4	56.5	1,068	672	9.69	38.0	1,483	1,033	2.74	3.92	19.8	4,410	403
W 30 × 108	346	8.96	26.3	1,038	648	7.60	20.3	1,442	997	2.15	6.89	49.6	1,680	24,200
W 27 × 114	343	9.08	28.2	1,029	648	7.71	21.3	1,429	997	2.18	5.41	42.5	2,100	9,220
W 24 × 117	327	12.3	37.1	981	631	10.4	27.9	1,363	970	2.94	7.53	39.2	2,090	8,190
W 21 × 122	307	12.2	41.0	921	592	10.3	29.8	1,279	910	2.92	6.45	31.3	2,630	3,160
W 18 × 130	290	11.3	47.7	870	555	9.55	32.8	1,208	853	2.7	4.65	23.9	3,680	810
W 30 × 90	283	8.71	24.8	849	531	7.39	19.4	1,179	817	2.09	8.52	57.5	1,410	49,600
W 24 × 103	280	8.29	27.0	840	531	7.04	20.0	1,167	817	1.99	4.59	39.2	2,390	5,310
W 27 × 94 W 14 × 145	278 260	8.83 16.6	25.9 81.6	834 780	527 503	7.50	19.9	1,158	810	2.12	6.70	49.5	1,740	19,900
W 24 × 94	254	8.25	25.9	762	481	14.1	54.7 19.4	1,083	773 740	3.98	7.11 5.18	16.8	4,400 2,180	348 7,800

F2011abn Steel Beams 37 Foundations Structures Lecture 18

Beam Design (revisited)

- 6. Evaluate shear stresses horizontal
 - $(V_a \le V_n/\Omega)$ or $(V_u \le \phi_v V_n)$
 - rectangles and W's $f_{v-max} = \frac{3V}{2A} \approx \frac{V}{A_{wab}}$ $V_n = 0.6 F_{vw} A_w$
 - $f_{v-max} = \frac{VQ}{Ih}$ general

Beam Design (revisited)

- 4^* . Include self weight for M_{max}
 - it's dead load
 - and repeat 3 & 4 *if necessary*

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

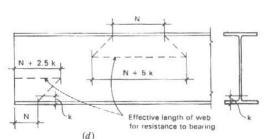
Photo: Ken Carper

Lecture 15

C 9 x 15

Steel Beams 37

Su2011abn


Weight per linear foot Nominal depth

Weight per linear foot Nominal depth Channel

Thickness Leg lengths

Beam Design (revisited)

7. Provide adequate bearing $(P_a \leq P_n/\Omega)$ area at supports $(P_u \leq \phi P_n)$

ARCH 331

F2008abn Steel Beams 39 Foundations Structures Lecture 18 ARCH 331

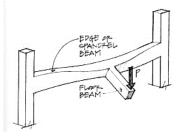
Beam Design (revisited)

8. Evaluate torsion

$$(f_v \leq F_v)$$

circular cross section

$$f_{v} = \frac{T\rho}{J}$$


rectangular

$$f_{v} = \frac{T}{c_{1}ab^{2}}$$

Steel Beams 40 Lecture 18

Lecture 18

Foundations Structures

a/b	C ₁	C2			
1.0	° 0.208	0.1406			
1.2	0.219	0.1661			
1.5	0.231	0.1958			
2.0	0.246	0.229			
2.5	0.258	0.249			
3.0	0.267	0.263			

TABLE 3.1. Coefficients for

nectang	jular Bars	in iorsion
a/b	C ₁	C ₂
1.0	* 0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.240

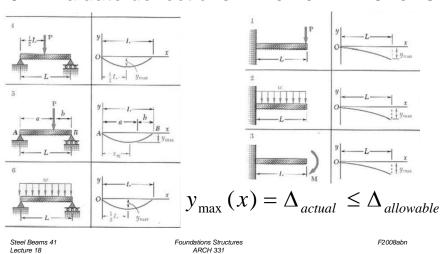
0.282 5.0 0.291 0.291 10.0 0.312 0.312 0.333

Load Tables & Equivalent Load

uniformly distributed loads

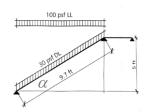
• equivalent "w"

$$M_{\text{max}} = \frac{w_{equivalent}L^2}{8}$$


Joist Designation	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K
Depth (in.)	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
Approx. Wt (lbs./ft.)	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
Span (ft.)															
10	825 550						1	วลด	l for	· liv	e lo	ad	det	lec	tio
11	825 542														
12	825	825	825	825			-		in F	2FI) tr	าtal	in l	RI A	αc
	455	550	550	550						\	٠, ، ، ،	, iui			. •
13	718	825	825	825											
	363	510	510	510											
14	618 289	750 425	825 463	825 463	825 550	825 550	825 550	825 550							
15	537	651	814	825	766	825	825	825	_		_	_		_	_
10	234	344	428	434	475	507	507	507							
16	469	570	714	825	672	825	825	825	825	825	825	825	825	825	825
	192	282	351	396	390	467	467	467	550	550	550	550	550	550	550
17	415	504	630	825	592	742	825	825	768	825	825	825	825	825	825
	159	234	291	366	324	404	443	443	488	526	526	526	526	526	526
18	369	448	561	760	528	661	795	825	684	762	825	825	825	825	825
	134	197	245	317	272	339	397	408	409	456	490	490	490	490	490
40	331	402 167	502 207	681	472 230	592	712 336	825 383	612 347	682 386	820 452	825 455	825 455	825 455	825 455
19				269 613	426	287 534	642	787	552	615	739	825	825	825	825
	113							347	297	330	386	426	426	426	426
19	298	361	453									754	822	825	825
20		361 142	177	230	197	246	287		400						
	298	361 142 327	177	230 555	197	483	582	712	499	556	670				400
20	298	361 142 327 123	177 409 153	230 555 198	197 385 170	483 212	582 248	712 299	255	285	333	373	405	406	406 825
20	298	361 142 327 123 298	177 409 153 373	230 555 198 505	197 385 170 351	483 212 439	582 248 529	712 299 648	255 454	285 505	333 609	373 687	405 747	406 825	825
20	298	361 142 327 123	177 409 153	230 555 198	197 385 170	483 212	582 248	712 299	255	285	333	373	405	406	

ARCH 331

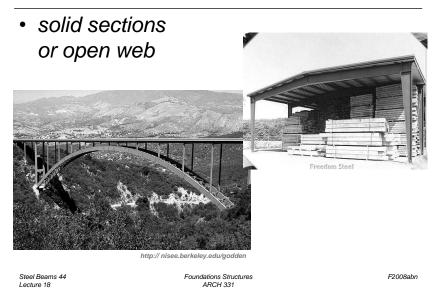
F2008ahn


Beam Design (revisited)

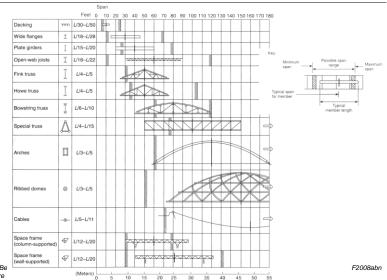
9. Evaluate deflections - NO LOAD FACTORS

Sloped Beams

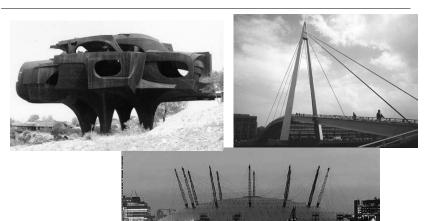
- stairs & roofs
- projected live load
- dead load over length


perpendicular load to beam:

$$w_{\perp} = w \cdot \cos \alpha$$


equivalent distributed load:

$$w_{adj.} = \frac{w}{\cos \alpha}$$
Foundations Structures


Steel Arches and Frames

Approximate Depths

Steel Shell and Cable Structures

 Steel Beams 45
 Foundations Structures
 F2008abn

 Lecture 18
 ARCH 331