**A**RCHITECTURAL **S**TRUCTURES: FORM, BEHAVIOR, AND DESIGN

**ARCH 331** DR. ANNE NICHOLS **F**ALL 2013

lecture fiffeen



# wood construction: materials & beams

Wood Beams 1 Lecture 15

Architectural Structures ARCH 331

F2009abr

#### Timber

- lightweight : strength ~ like steel
- strengths vary
  - by wood type
  - by direction
  - by "flaws"
- size varies by tree growth
- renewable resource
- manufactured wood
  - assembles pieces
  - adhesives

Wood Beams 3 Lecture 15

Foundations Structures ARCH 331

0.50 Specific Gravity

Air Dr

F2008abn

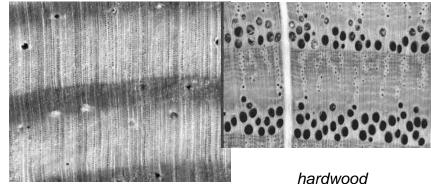
## Wood Beam Design

- National Design Specification
  - National Forest Products Association
  - ASD & LRFD (combined in 2005)
  - adjustment factors x tabulated stress = allowable stress
  - adjustment factors terms, C with subscript
  - i.e, bending:

 $f_b \leq F'_b = F_b \times (product \ of \ adjustment \ factors)$ 

Wood Beams 2 Lecture 15

Wood Reams 4


Lecture 15

Foundations Structures ARCH 331

F2008abn

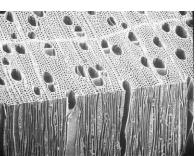
## Wood Properties

cell structure and density



http://www.swst.org/teach/set2/struct1.html

ARCH 331


softwood

Foundations Structures

F2008abr

#### Wood Properties

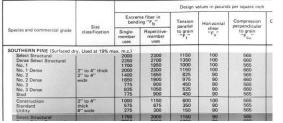
- moisture
  - exchanges with air easily
  - excessive drying causes warping and shrinkage
  - strength varies some
- temperature
  - steam
  - volatile products
  - combustion



F2008abr

F2008abn

Wood Beams 5 Lecture 15 Foundations Structures ARCH 331


Foundations Structures

ARCH 331

#### Structural Lumber

- dimension 2 x's (nominal)
- · beams, posts, timber, planks
- grading
  - select structural
  - no. 1, 2, & 3
- tabular values by species
- glu-lam
- plywood Wood Beams 7

Lecture 15



# Wood Properties

- load duration
  - short duration
    - higher loads
  - normal duration
    - > 10 years
- creep
  - additional

deformation with no additional load

Wood Beams 6 Lecture 15 Foundations Structures ARCH 331 F2008abn

#### Adjustment Factors

- terms
  - $-C_D = load duration factor$
  - $-C_M =$  wet service factor
    - 1.0 dry ≤ 16% MC
  - $-C_F = size \ factor$ 
    - visually graded sawn lumber and round timber > 12" depth

$$C_F = (12/d)^{\frac{1}{9}} \le 1.0$$

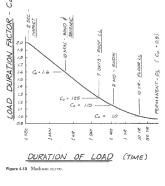



Table 10.3 (pg 376)

Wood Beams 8 Lecture 15 Foundations Structures ARCH 331 F2008abn

#### Adjustment Factors

- terms
  - $-C_{fu} = flat$  use factor
    - not decking
  - $-C_i = incising factor$ 
    - increase depth for pressure treatment
  - $-C_t = temperature factor$ 
    - lose strength at high temperatures

• terms

Wood Beams 10

Lecture 15

- $-C_r = repetitive member factor$
- $-C_H =$  shear stress factor
  - splitting
- $-C_V = volume \ factor$ 
  - same as  $C_F$  for glue laminated timber
- $-C_L = beam$  stability factor
  - beams without full lateral support
- $-C_c = curvature factor for laminated arches$

Foundations Structures

ARCH 331

Wood Beams 9 Lecture 15 Foundations Structures ARCH 331

#### Allowable Stresses

- design values
  - F<sub>b</sub>: bending stress
  - $-F_t$ : tensile stress strong
  - $-F_{v}$ : horizontal shear stress
  - $F_{c\perp}$ : compression stress (perpendicular to grain)
  - *F<sub>c</sub>*: compression stress (parallel to grain) strong
  - E: modulus of elasticity
  - $-F_{p}$ : bearing stress (parallel to grain)



F2008abr



## Load Combinations

- · design loads, take the bigger of
  - (dead loads)/0.9
  - (dead loads + any possible combination of live loads)/C<sub>D</sub>
- deflection limits
  - no load factors
  - for stiffer members:
    - $\Delta_T \max from LL + 0.5(DL)$

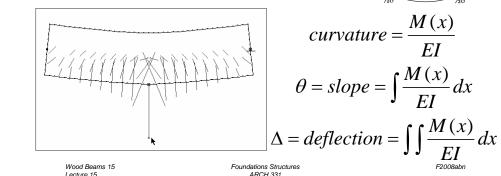
F2008abn

#### Beam Design Criteria

- strength design
  - bending stresses predominate
  - shear stresses occur
- serviceability
  - limit deflection and cracking
  - control noise & vibration
  - no excessive settlement of foundations
  - durability
  - appearance
  - component damage

Wood Beams ponding

Foundations Structures ARCH 331


M

EI

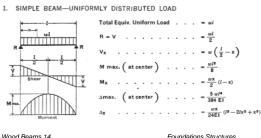

R

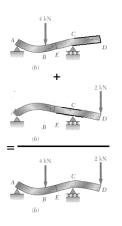
## **Beam Deformations**

- · curvature relates to
  - bending moment
  - modulus of elasticity
  - moment of inertia



Lecture 15




F2008abn

#### Beam Design Criteria

- superpositioning
  - use of beam charts
  - elastic range only!
  - "add" moment diagrams
  - "add" deflection CURVES (not maximums)





Lecture 15

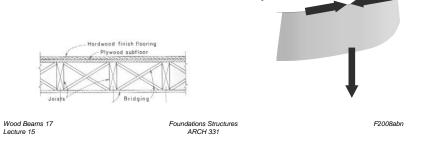
Foundations Structures ARCH 331

F2008abr

## Deflection Limits

based on service condition, severity

|                       |         | -     |
|-----------------------|---------|-------|
| Use                   | LL only | DL+LL |
| Roof beams:           |         |       |
| Industrial            | L/180   | L/120 |
| Commercial            |         |       |
| plaster ceiling       | L/240   | L/180 |
| no plaster            | L/360   | L/240 |
| Floor beams:          |         |       |
| Ordinary Usage        | L/360   | L/240 |
| Roof or floor (damage | L/480   |       |
|                       |         |       |


Wood Beams 16 Lecture 15

Foundations Structures ARCH 331

F2008abr

#### Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger  $I_v$



#### Design Procedure

- 1. Know  $F_{all}$  for the material or  $F_{ll}$  for LRFD
- 2. Draw V & M, finding M<sub>max</sub>
- 3. Calculate  $S_{req'd}$   $(f_b \leq F_b)$
- 4. Determine section size

Foundations Structures

ARCH 331

#### Lecture 15

Wood Beams 18

#### Beam Design

- 4\*. Include self weight for M<sub>max</sub>
  - and repeat 3 & 4 if necessary

#### 5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho. Photo: Ken Carper



Wood Beams 19 Lecture 15 Foundations Structures ARCH 331 F2008abn

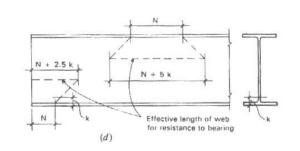
F2008abn

Wood Beams 18 Lecture 15 F2008abn

h

b

 $S = -bh^2$ 


#### Beam Design

- 6. Evaluate shear stresses horizontal
  - $(f_v \leq F_v)$
  - rectangles and W's  $f_{v-\max} = \frac{3V}{2A} \approx \frac{V}{A_{web}}$

• general 
$$f_{v-\max} = \frac{VQ}{Ib}$$

#### Beam Design

7. Provide adequate bearing area at supports  $f_p = \frac{P}{A} \le F_p$ 





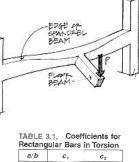
#### Beam Design

Wood Beams 20

Lecture 15

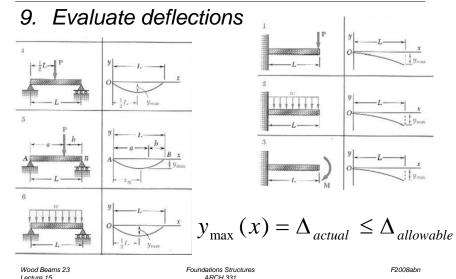
8. Evaluate torsion

$$(f_v \leq F_v)$$


• circular cross section

$$f_v = \frac{T\rho}{J}$$

• rectangular


$$f_v = \frac{T}{c_1 a b^2}$$

Wood Beams 22 Lecture 15 Foundations Structures ARCH 331



|          | a/b  | <b>c</b> <sub>1</sub> | C <sub>2</sub> |  |  |  |
|----------|------|-----------------------|----------------|--|--|--|
|          | 1.0  | 0.208                 | 0.1406         |  |  |  |
|          | 1.2  | 0.219                 | 0.1661         |  |  |  |
|          | 1.5  | 0.231                 | 0.1958         |  |  |  |
|          | 2.0  | 0.246                 | 0.229          |  |  |  |
|          | 2.5  | 0.258                 | 0.249          |  |  |  |
|          | 3.0  | 0.267                 | 0.263          |  |  |  |
|          | 4.0  | 0.282                 | 0.281          |  |  |  |
|          | 5.0  | 0.291                 | 0.291          |  |  |  |
|          | 10.0 | 0.312                 | 0.312          |  |  |  |
|          | 00   | 0.333                 | 0.333          |  |  |  |
| rzuuoabn |      |                       |                |  |  |  |

#### Beam Design



#### Decking

- across beams or joists
- floors: 16 in. span common
  - $-\frac{3}{4}$  in. tongue-in-groove plywood
  - 5/8 in. particle board over 1/2 in. plywood
  - hardwood surfacing
- roofs: 24 in. span common
  - $-\frac{1}{2}$  in. plywood

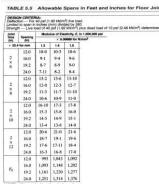


```
Wood Beams 24
Lecture 15
```

#### Foundations Stru ARCH 331

#### Engineered Wood

- plywood
  - veneers at different orientations
  - glued together


ROSS BANIT

- split resistant
- higher and uniform strength
- limited shrinkage and swelling
- used for sheathing, decking, shear walls, diaphragms

#### Joists & Rafters

- allowable load tables (w)
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings





Wood Beams 25 Lecture 15

Foundations Structures ARCH 331

#### F2008abr

#### Engineered Wood

- glued-laminated timber
  - glulam
  - short pieces glued together
  - straight or curved
  - grain direction parallel
  - higher strength
  - more expensive than sawn timber
  - large members (up to 100 feet!)
  - flexible forms

Wood Beams 27

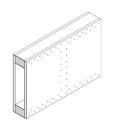
Lecture 15



Wood Beams 26 Lecture 15

F2008abn

F2008abr


#### Engineered Wood

- I sections
  - beams
- other products
  - pressed veneer strip panels (Parallam)
  - laminated veneer lumber (LVL)
- wood fibers
  - Hardieboard: cement & wood

Wood Beams 28 Lecture 15 Architectural Structures ARCH 331

#### Timber Elements

- built-up box sections
  - built-up beams
  - usually site-fabricated
  - bigger spans

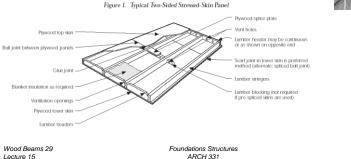




Wood Beams 30 Lecture 15

Foundations Structures ARCH 331

F2008abn


2008abi

#### Timber Elements

- stressed-skin elements
  - modular built-up "plates"
  - typically used for floors or roofs

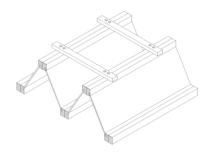


F2008abn



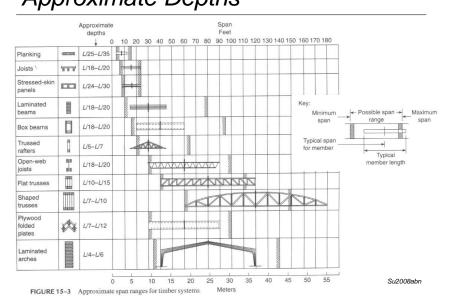
#### Timber Elements

- trusses
  - long spans
  - versatile
  - common in roofs






Foundations Structures ARCH 331 F2008abn


#### Timber Elements

- folded plates and arch panels
  - usually of plywood



Structural Systems I COSC 321 Su2008abn

# Approximate Depths



#### Timber Elements

- arches and lamellas
  - arches commonly laminated timber
  - long spans
  - usually only for roofs





Wood Beams 33 Lecture 15

Structural Systems I COSC 321

Su2008abn