ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

ARCH 331

DR. ANNE NICHOLS

FALL 2013

lecture thirteen

design loads & methods, structural codes

Methods & Codes 1 Architectural Structures F2009abn
Lecture 13 ARCH 331

Design Methods

- different approaches to meeting strength/safety requirements
 - allowable stress design (elastic)
 - ultimate strength design
 - limit state design
 - plastic design
 - load and resistance factor design
- assume a behavior at failure or other threshold and include a margin of safety

Design

- · factors out of the designer's control
 - loads
 - occurrence
- factors within the designer's control
 - choice of material
 - "cost" of failure (F.S., probability, location)
 - economic design method
 - analysis method

Methods & Codes 2 Lecture 13 Foundations Structures ARCH 331 F2008abn

Load Types

- D = dead load
- L = live load
- $L_r = live roof load$
- W = wind load
- S = snow load
- *E* = earthquake load

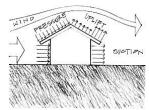


Figure 1.13 Wind loads on a structure

- R = rainwater load or ice water load
- *T* = effect of material & temperature
- *H* = hydraulic loads from soil (*F* from fluids)

Methods & Codes 3 Foundations Structures F2008abn Methods & Codes 4 Foundations Structures F2008abn
Lecture 13 ARCH 331 Lecture 13 ARCH 331

1

Dead Loads

- fixed elements
 - structure itself
 - internal partitions
 - hung ceilings
 - all internal and external finishes
 - HVAC ductwork and equipment
 - permanently mounted equipment
- *F* = *mg* (*GRAVITY*)

Methods & Codes 5

Foundations Structures ARCH 331

F2008abn

Weight of Materials

- for a volume

 $-W = \gamma V$ where γ is weight/volume

 $-W = \gamma t A$ for an extruded area with

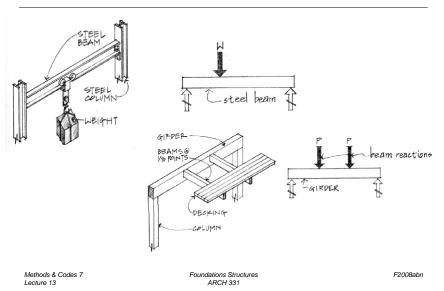
153

height of t

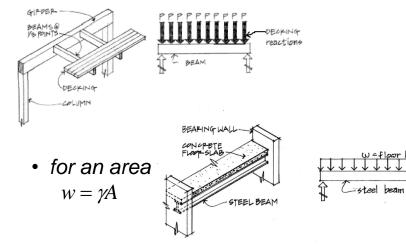
Table 5.1 Selected building material weights

Assembly	lb./ft.2	kN/m²
Roofs:		
3-ply and gravel	5.5	0.26
5-ply and gravel	6.5	0.31
Wood shingles	2	0.10
Asphalt shingles	2	0.10
Corrugated metal	1-2.5	0.05-0.12
Plywood	3/inch	0.0057/mm
Insulation		
—fiberglass batt	0.5	0.0025
Insulation-rigid	1.5	0.075

Assembly	1b./ _{ft.2}	kN/m²
Floors:		
Concrete plank	6.5	0.31
Concrete slab	12.5/in.	0.59/mm
Steel decking w/concrete	35-45	1.68-2.16
Wood joists	2-3.5	0.10-0.17
Hardwood floors	4/in.	0.19/mm
Ceramic tile w/thin set	15	0.71
Lightweight concrete	8/in.	0.38/mm
Timber decking	2.5/in.	0.08/mm



Methods & Codes 6 Lecture 13


Foundations Structures

F2008abn

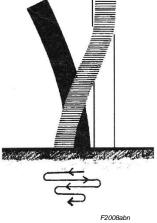
Concentrated Loads

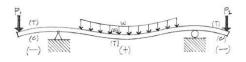
Distributed Loads

Methods & Codes 8 Lecture 13

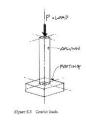
Foundations Structures ARCH 331

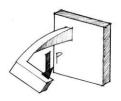
Dynamic Loads


- time, velocity, acceleration
- kinetics
 - forces causing motion $W = m \cdot g$
 - work
 - conservation of energy



Foundations Structures ARCH 331

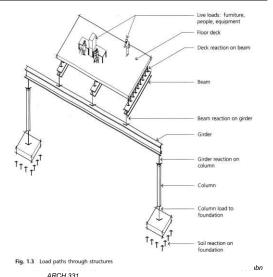

Load Locations


- centric
- eccentric
- · bending or flexural load
- torsional load
- combined loading

Methods & Codes 10

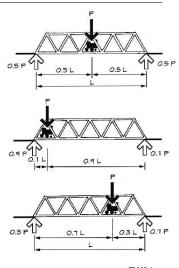
Foundations Structures

F2008abr


Load Paths

 tributary areas

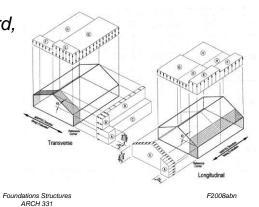
Methods & Codes 9


Lecture 13

transfer

Live Loads

- occupancy
- movable furniture and equipment
- construction / roof $traffic - L_r$
- minimum values
- reduction allowed as area increases


Methods & Codes 12 Lecture 13

Foundations Structures ARCH 331

Wind Load

- wind speed
- gusting
- terrain
- windward, leeward, up and down!
- drag
- rocking
- harmonic
- torsion

Methods & Codes 13 Lecture 13

Seismic Load

- earthquake acceleration
 - -F = ma
 - movement of ground (3D)
 - building mass responds
 - static models often used,
 V is static shear
 - building period, T ≈ 0.1N, determines C
 - building resistance R_W
 - Z (zone), I (importance)

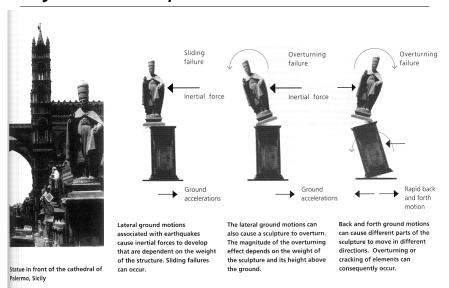
 $V = \frac{ZICW}{R_W}$

Figure 1.14 Earthquake loads on a structure.

F2008abn

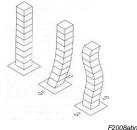
Snow Load

- latitude
- solar exposure
- · wind speed
- roof slope



Moscow 2006 (BBC News)

Methods & Codes 14 Lecture 13 Foundations Structures ARCH 331 F2008abn


Dynamic Response

Dynamic Response

- period of vibration or frequency
 - wave
 - sway/time period
- damping
 - reduction in sway
- resonance
 - amplification of sway

Properties of a sine wave: Wavelength, (or Time, !)

Methods & Codes 17

ARCH 331

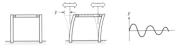
Methods & Codes 18

Foundations Structures ARCH 331

Water Load

- rainwater clogged drains
- ponding
- ice formation

mrfussycontracting.com


Methods & Codes 19 Lecture 13

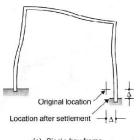
Foundations Structures ARCH 331

F2008abn

Frequency and Period

natural period of vibration

- avoid resonance
- hard to predict seismic period
- affected by soil
- short period
 - · high stiffness
- long period
 - · low stiffness

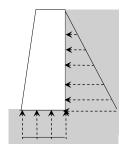

"To ring the bell, the sexton must pull on the downswing of the bell in time with the natural frequency of the bell."

Lecture 13

F2008abn

Thermal Load

- stress due to strain
- restrained expansion or contraction
- temperature gradients
- composite construction


(a) Single-bay frame.

Methods & Codes 20 Lecture 13

Foundations Structures ARCH 331

Hydraulic Loads

- pressure by water in soil, H
- fluid pressure, F
 - normal to surface
- flood

Methods & Codes 21

Foundations Structures ARCH 331

F2008abn

F2008abn

Building Codes

- occupancy
- construction types
- structural chapters
 - loads, tests, foundations

OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (lbs.)
Apartments (see residential)	_	_
Access floor systems Office use Computer use	50 100	2,000 2,000
3. Armories and drill rooms	150	_
4 Assembly areas and theaters Fixed seats (fastened to floor) Lobbies Movable scats Stages and platforms Follow spot, projections and control rooms Cawalks	60 100 100 125 50	_

- structural materials, assemblies
 - roofs
 - concrete
 - masonry
 - steel

Building Codes

- documentation
 - laws that deal with planning, design, construction, and use of buildings
 - regulate building construction for
 - · fire, structural and health safety
 - cover all aspect of building design
 - references standards
 - · acceptable minimum criteria
 - · material & structural codes

Methods & Codes 22 Lecture 13

Foundations Structures ARCH 331

F2008abn

Prescribed Loads

- ASCE-7
 - live load (not roof) reductions allowed
- International Building Code
 - occupancy
 - wind: pressure to static load
 - seismic: shear load function of mass and response to acceleration

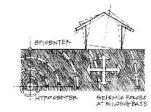


Figure 1.14 Earthquake loads on a structure.

fire resistance

Methods & Codes 24 Lecture 13

Foundations Structures ARCH 331

Structural Codes

- prescribe loads and combinations
- prescribe design method
- prescribe stress and deflection limits
- backed by the profession
- may require design to meet performance standards
- related to material or function

Methods & Codes 25

Foundations Structures ARCH 331

F2008abn

Design Methods

- probability of loads and resistance
- material variability
- overload, fracture, fatigue, failure
- allowable stress design

$$f_{actual} = \frac{P}{A} \le f_{allowed} = \frac{f_{capacity}}{F.S.}$$

- limit state design
 - design loads & capacities

Structural Codes

- Design Codes
 - Wood
 - NDS
 - Steel
 - AISC
 - Concrete
 - ACI
 - AASHTO
 - Masonry
 - MSJC

Methods & Codes 26 Lecture 13

ARCH 331

Allowable Stress Design

- historical method
- a.k.a. working stress. strength design
- stresses stay in ELASTIC range

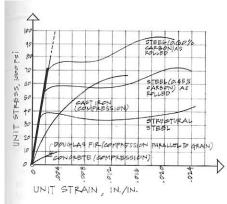


Figure 5.20 Stress-strain diagram for various materials.

Methods & Codes 27

Foundations Structures

F2008abr

Methods & Codes 28 Lecture 13

Foundations Structures ARCH 331

ASD Load Combinations

ASCE-7 (2010)

• D

• D + L

• $D + 0.75(L_r \text{ or } S \text{ or } R)$

• $D + 0.75L + 0.75(L_r \text{ or S or R})$

• D + (0.6W or 0.7E)

-D + 0.75L + 0.75(0.6W) + 0.75(L, or S or R)

-D + 0.75L + 0.75(0.7E) + 0.75S

• 0.6D + 0.6W

• 0.6D + 0.7E

Foundations Structures ARCH 331 F2008abr

Limit State Design

- load and resistance factor design (LRFD)
 - loads:
 - · not constant,
 - · possibly more influential on failure
 - · happen more or less often
 - UNCERTAINTY

$$\gamma_D R_D + \gamma_L R_L \leq \phi R_n$$

φ - Resistance factor

γ - Load factor for (D)ead & (L)ive load

Limit State Design

- · a.k.a. strength design
- stresses go to limit (strain outside elastic range)
- · loads may be factored
- resistance or capacity reduced by a factor
- based on material behavior
- "state of the art"

Methods & Codes 30 Lecture 13 Foundations Structures ARCH 331 F2008abn

LRFD Load Combinations

ASCE-7 (2010)

• 1.4D

• $1.2D + 1.6L + 0.5(L_r \text{ or S or R})$

• $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$

• $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$

• 1.2D + 1.0E + L + 0.2S

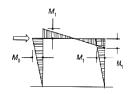
• 0.9D + 1.0W

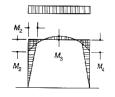
• 0.9D + 1.0E

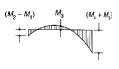
- F has same factor as D in 1-5 and 7
- · H adds with 1.6 and resists with 0.9 (permanent)

Methods & Codes 32 Lecture 13 Foundations Structures
ARCH 331

Deflection Limits


• based on service condition, severity


Use	LL only	DL+LL
Roof beams:		
Industrial	L/180	L/120
Commercial		
plaster ceiling	L/240	L/180
no plaster	L/360	L/240
Floor beams:		
Ordinary Usage	L/360	L/240
Roof or floor (damageable elements)		L/480


Methods & Codes 33 Foundations Structures F2008abn
Lecture 13 ARCH 331

Load Conditions

- loads, patterns & combinations
 - usually uniformly distributed gravity loads
 - worst case for largest moments...
 - wind direction can increase moments

Methods & Codes 34 Lecture 13 Foundations Structures ARCH 331