Architectural Structures: Form, Behavior, and Design Arch 331 Dr. Anne Nichols Fall 2013

lecture eight

shear & bending moment diagrams

Equilibrium Method

- important places
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments
- free ends
 - zero forces

Semigraphical Method

- by knowing
 - area under loading curve = change in V
 - area under shear curve = change in M
 - concentrated forces cause "jump" in V
 - concentrated moments cause "jump" in M

$$V_D - V_C = -\int_0^x w \, dx \qquad M_D - M_C = \int_0^x V \, dx$$
$$x_C \qquad \qquad x_C$$

Semigraphical N

• relationships

Figure 7.11 Relationship of load, shear, moment, slope, and deflection diagrams.

V & M Diagrams 4 Lecture 8

Semigraphical Method

• M_{max} occurs where V = 0 (calculus)

Curve Relationships

- integration of functions
- line with 0 slope, integrates to sloped

ex: load to shear, shear to moment

Curve Relationships

line with slope, integrates to parabola

ex: load to shear, shear to moment

Curve Relationships

• parabola, integrates to 3rd order curve

• ex: load to shear, shear to moment

Basic Procedure

- 1. Find reaction forces & moments Plot axes, underneath beam load diagram
- V:
- 2. Starting at left
- 3. Shear is 0 at free ends
- 4. Shear jumps with concentrated load
- 5. Shear changes with area under load

Basic Procedure

M:

- 6. Starting at left
- 7. Moment is 0 at free ends
- 8. Moment jumps with moment
- 9. Moment changes with area under V

10. Maximum moment is where shear = 0! (locate where V = 0)

Shear Through Zero

slope of V is w (-w:1)

Parabolic Shapes

• cases

up fast, then slow

up slow, then fast down fast, then slow down slow, then fast

V & M Diagrams 12 Lecture 8 Architectural Structures ARCH 331 F2013abn

Deflected Shape & M(x)

- -M(x) gives shape indication
- boundary conditions must be met

Boundary Conditions

- at pins, rollers, fixed supports: y = 0
- at fixed supports: $\theta = 0$
- at inflection points from symmetry: $\theta = 0$

•
$$y_{max} at \frac{dy}{dx} = 0$$

V & M Diagrams 14 Lecture 8

Tabulated Beam Formulas

- how to read charts
- 1. SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD

V & M Diagrams 15 Lecture 8 Architectural Structures ARCH 331 F2013abn

Tools

- software & spreadsheets help
- <u>http://www.rekenwonder.com/atlas.htm</u>

Tools – Multiframe

• in computer lab

F2013abn

V & M Diagrams 17 Lecture 8

ARCH 331

Tools – Multiframe

- frame window
 - define beam members
 - select points, assign supports
 - select members, assign <u>section</u>
- load window
 - select point or member, add point or distributed loads

F2013abn

Tools – Multiframe

- to run analysis choose - Analyze menu Linear
- plot •
 - choose options - double click (all)

5

Arcl

- results
 - choose options

V & M Diagrams 19 Lecture 8