ARCH 331: Practice Quiz 6

Note: No aids are allowed for part 1. One side of a letter sized paper with notes is allowed during part 2, along with a silent, non-programmable calculator. There are reference charts for part 2, shown on pages 2-3.

Clearly show your work and answer.
Part 1) Worth 5 points (conceptual questions)
Part 2) Worth 45 points
(NOTE: The member size, load magnitudes, reinforcement, and materials can and will be changed for the quiz! The beam supports will not change.)
A 28 ft simply supported reinforced concrete beam (shown) is 14 in . wide by 22 in . deep with $10-\# 8$ bars (two layers). The effective depth, d, is 17.625 in.. It has 3000 psi concrete and Grade 40 reinforcement $\left(f_{y}=40 \mathrm{ksi}\right)$. The beam has a total factored distributed load of $3000 \mathrm{lb} / \mathrm{ft}$. There will be \#3 U stirrups.
a) Determine if the beam is adequate for flexure and reinforcing requirements when $\mathrm{M}_{\mathrm{u}}=294 \mathrm{k}$-ft.
b) Determine the key values for shear, and determine the lengths over which the

10 - \#8 bars beam requires stirrups for strength and stirrups for crack control. $\mathrm{V}_{\mathrm{u}-\max }=42 \mathrm{k}$.
c) Determine the spacing required for strength with the maximum design shear.

A 9 in. thick solid one-way continuous slab (no figure) with a 13 ft span is to be designed for a maximum factored moment of 19 k - $\mathrm{ft} / \mathrm{ft}$ of width. It has 3000 psi concrete and Grade 60 reinforcement ($f_{y}=60 \mathrm{ksi}$). Assume $d=8 \mathrm{in}$.
d) Determine the required reinforcement and spacing in both directions. (Note: checking moment capacity adequacy is not required for this part.)
e) Find the minimum thickness if deflection will not be computed.

Answers - Not provided on actual quiz!
a) $\phi \mathrm{M}_{\mathrm{n}}=313 \mathrm{k}-\mathrm{ft}>\mathrm{M}_{\mathrm{u}} \rho_{\text {min }}<0.032 \not \leq \rho_{\max } \therefore$ Not OK.
b) $\quad \mathrm{V}_{\mathrm{u} @ \mathrm{~d}}=37.6 \mathrm{k}, \phi \mathrm{V}_{\mathrm{c}}=20.3 \mathrm{k}, 1 / 2 \phi \mathrm{~V}_{\mathrm{c}}=10.1 \mathrm{k}, \phi \mathrm{V}_{\mathrm{s}}=17.3 \mathrm{k}$. See sketch for lengths.
c) $\mathrm{s}_{\text {req'd }}=6.72$ in (and less than $\mathrm{d} / 2$)
d) $\mathrm{R}_{\mathrm{n}} \approx 330 \mathrm{psi}, \rho \approx 0.007, \mathrm{~A}_{\text {smin-temp }}=0.194 \mathrm{in}_{2} / \mathrm{ft}$.; one possibility is \#4 at 3.5 in .
e) $t=6.5 \mathrm{in}$.

REFERENCE CHARTS FOR QUIZ 6

Maximum Reinforcement Ratio ρ for Singly Reinforced Rectangular Beams

	$f_{c}^{\prime}=3000 \mathrm{psi}$	$f_{c}^{\prime}=3500 \mathrm{psi}$	$f_{c}^{\prime}=4000 \mathrm{psi}$	$f_{c}^{\prime}=5000 \mathrm{psi}$	$f_{c}^{\prime}=6000 \mathrm{psi}$
f_{y}	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.80$	$\beta_{1}=0.75$
$40,00 \mathrm{psi}$	0.0203	0.0237	0.0271	0.0319	0.0359
$50,000 \mathrm{psi}$	0.0163	0.0190	0.0217	0.0255	0.0287
$60,000 \mathrm{psi}$	0.0135	0.0158	0.0181	0.0213	0.0239
	$f_{c}^{\prime}=20 \mathrm{MPa}$	$f_{c}^{\prime}=25 \mathrm{MPa}$	$f_{c}^{\prime}=30 \mathrm{MPa}$	$f_{c}^{\prime}=35 \mathrm{MPa}$	$f_{c}^{\prime}=40 \mathrm{MPa}$
f_{y}	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.85$	$\beta_{1}=0.81$	$\beta_{1}=0.77$
300 MPa	0.0181	0.0226	0.0271	0.0301	0.0327
350 MPa	0.0155	0.0194	0.0232	0.0258	0.0281
400 MPa	0.0135	0.0169	0.0203	0.0226	0.0245
500 MPa	0.0108	0.0135	0.0163	0.0181	0.0196

STEEL REINFORCEMENT INFORMATION Reinforcement ratio, ρ

Total Areas for Various Numbers of Reinforcing Bars
 Table 3.7.1 Total Areas f

$\begin{aligned} & \text { Bar } \\ & \text { Size } \end{aligned}$	Nominal Diameter (in.)	Weight (lb/ft)	Number of Bars									
			1	2	3	4	5	6	7	8	9	10
\# 3	0.375	0.376	0.11	0.22	0.33	0.44	0.55	0.66	0.77	0.88	0.99	1.10
\#4	0.500	0.668	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00
\#5	0.625	1.043	0.31	0.62	0.93	1.24	1.55	1.86	2.17	2.48	2.79	3.10
\#6	0.750	1.502	0.44	0.88	1.32	1.76	2.20	2.64	3.08	3.52	3.96	4.40
\#7	0.875	2.044	0.60	1.20	1.80	2.40	3.00	3.60	4.20	4.80	5.40	6.00
\# 8	1.000	2.670	0.79	1.58	2.37	3.16	3.95	4.74	5.53	6.32	7.11	7.90
\#9	1.128	3.400	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
\#10	1.270	4.303	1.27	2.54	3.81	5.08	6.35	7.62	8.89	10.16	11.43	12.70
\#11	1.410	5.313	1.56	3.12	4.68	6.24	7.80	9.36	10.92	12.48	14.04	15.60
$\pm 14^{a}$	1.693	7.65	2.25	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50
\# $188^{\text {a }}$	2.257	13.60	4.00	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00

\# 14 and \# 18 bars are used primarily as column reinforcement and are rarely used in beams.
Bar
Size
REFERENCE CHARTS FOR OUIZ 6

*Members subjected to shear and flexure only; $\phi \mathrm{V}_{\mathrm{c}}=\phi 2 \sqrt{\mathrm{f}_{c}^{\prime}} \mathrm{b}_{\mathrm{w}} \mathrm{d}, \phi=0.75$ (ACl 11.3.1.1) ** $A_{v}=2 \times A_{b}$ for U stirrups; $f_{y} \leq 60 \mathrm{ksi}(A C l ~ 11.5 .2)$ \dagger A practical limit for minimum spacing is $\mathrm{d} / 4$
$\dagger \dagger$ Maximum spacing based on minimum shear reinforcement ($=A_{v} f_{y} / 50 \mathrm{~b}_{\mathrm{w}}$) must also be considered
$(\mathrm{ACl}$ 11.5.5.3).

TABLE 13.6 Areas Provided By Spaced Reinforcement

| | Bar
 Spacing
 (in.) | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | TABLE 9.5(a)-MINIMUM THICKNESS OF

NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE COMPUTED

		Minimum thickness, \boldsymbol{h}		
	Simply supported	One end continuous	Both ends continuous	Cantilever
Member	Members not supporting or attached to partitions or other construction likely to be damaged by large deflections.			
Solid oneway slabs	R/20	Q/24	</28	$\ell / 10$
Beams or ribbed oneway slabs	$\ell / 16$	$\ell / 18.5$	$\ell / 21$	$\ell / 8$

[^0] values shall be modified as follows:
a) For structural lightweight concrete having unit weight in the range 90-120
lb/ft ${ }^{3}$, the values shall be multiplied by $\left(1.65-0.005 w_{c}\right)$ but not less than 1.09, where \boldsymbol{w}_{c} is the unit weight in lb/ft
b) For $\boldsymbol{f}_{\boldsymbol{y}}$ other than 60,000 psi, the values shall be multiplied by $\left(\mathbf{0 . 4}+\boldsymbol{f}_{\boldsymbol{y}} / \mathbf{1 0 0}, \mathbf{0 0 0}\right)$.

[^0]: 1) Span length ℓ is in inches.
 2) Values given shall be used directly for members with normalweight con-
 crete $\left(w_{c}=145 \mathrm{lb} / \mathrm{ft}^{3}\right)$ and Grade 60 reinforcement. For other conditions, the
