ARCH 331: Practice Quiz 6

Note: No aids are allowed for part 1. One side of a letter sized paper with notes is allowed during part 2, along with a silent, **non-programmable** calculator. There are reference charts for part 2, shown on pages 2-3.

Clearly show your work and answer.

Part 1) Worth 5 points (conceptual questions)

Part 2) Worth 45 points

(*NOTE:* The member size, load magnitudes, reinforcement, and materials can and will be changed for the quiz! The beam supports will not change.)

A 28 ft simply supported reinforced concrete beam (shown) is 14 in. wide by 22 in. deep with 10-#8 bars (two layers). The effective depth, *d*, is 17.625 in.. It has 3000 psi concrete and Grade 40 reinforcement ($f_y = 40$ ksi). The beam has a total factored distributed load of 3000 lb/ft. There will be #3 U stirrups.

- a) Determine if the beam is adequate for flexure and reinforcing requirements when $M_u = 294$ k-ft.
- b) Determine the key values for shear, and determine the lengths over which the beam requires stirrups for strength and stirrups for crack control. $V_{u-max} = 42 \text{ k}$.

c) Determine the spacing required for strength with the maximum design shear.

A 9 in. thick solid one-way continuous slab (no figure) with a 13 ft span is to be designed for a maximum factored moment of 19 k-ft/ft of width. It has 3000 psi concrete and Grade 60 reinforcement ($f_y = 60$ ksi). Assume d = 8 in.

- d) Determine the required reinforcement and spacing in both directions. (*Note: checking moment capacity adequacy <u>is not</u> required for this part.)*
- e) Find the minimum thickness if deflection will not be computed.

REFERENCE CHARTS FOR QUIZ 6

						BAM	เ <i>"</i> "ย								
1	- 10	<u>ත</u>	0 00	-	-	9	2		t	m I	-	I	-		0
	0					smo/ft	бү ' ^и В								b,
110	10(000	06	- 80	70	- 60	- 50		- 40	30		7	10		
	f' = 600	$f_y = 40,0$	$ \mathbf{z} \mathbf{f}_{c}^{\prime} = 5000 $		000				5						
	$\begin{array}{ccc} & & & \\ 0 & f_c' = 6000 \\ 00 & f_y = 50,00 \end{array}$	///			$f_c^r = 4$ $f_y^r = 4$		= 3000 = 40,000	000	0000			d ²			
	$f_c' = 600$ $f_y = 60,0$	50.000	0000	000				$f_c' = 30$	$f_y = 50$			$M_n = R_n b$		rols	0.00
		يت م = = =	$-\frac{f_c}{f_c} = 5($	$f_{y}^{\prime} = 400$	$f_c' = \frac{1}{4000}$		3000 60,000							Min p cont	•
							بر بر م								
1600	001	1400	1200		1000		800	600		400		000	002		0
				is	sd ' ^u У 'əc	onstanc	cient of re	iffeoJ							
Ι.	I	I	I	I				8	10	2.00	4.40 6.00	7.90	15.60	22.50	
= 6000 psi i = 0.75	0.0359 0.0287 0.0287	= 40 MPa	0.0327 0.0281 0.0245 0.0196		N	Ę			9	0.99	3.96	7.11	11.43	20.25	
i f' = B		β, ¹							8	0.88 1.60	3.52 4.80	6.32	10.16	32.00	
= 5000 ps	0.0319 0.0255 0.0213	= 35 MPa = 35 MPa 3, = 0.81	0.0301 0.0258 0.0226 0.0181		Mac			ars	2	0.77	4.20	1 5.53	8.89	15.75	
ai fe'	-	a f.			INE			er of B	6	0.66	2.64	4.74	7.62	13.50	
:4000 ps = 0.85	0.0271	= 30 MP	0271 0232 0232 0203		EN I			Numb	S	0.55	300	3.95	6.35	11.25	
جر م		ي م ا	0000		N L		lg Bars		4	0.80	1.76	3.16	5.08	9.00 16.00	
500 psi = 0.85	0237 0190 0158	25 MPa = 0.85	0226 0194 0169 0135				inforcin		m	0.33	1.32	2.37	3.81	6.75	
f; =] B, :	0000	$f_c = \int_c f_c$	0000				s of Re		2	0.22	0.88 0.88	1.58	2.54	4.50	
00 psi 0.85	203 163 35	0.85	181 155 135 108		0	2	lumber		-	0.11	0.60	0.79	1.27	2.25	
$f_c' = 3($ $B_i =$	0.0	$f'_c = 2$ $\beta_1 =$	0.0				arious N	Watabe	(lb/ft)	0.376 0.668	1.502	2.670	4.303	7.65	
f.	40,000 psi 50,000 psi 60,000 psi	f, f,	300 MPa 350 MPa 400 MPa 500 MPa		Ü	0	3.7.1 Areas for Va	Nominal	lin.)	0.375 0.500	0.750 0.875	1.128	1.270	1.693	
							Table Total		Size	# # 4	6# 6#	* 6	#10	#14° #18°	

Figure 3.8.1 Strength curves $(R_n \text{ vs } \rho)$ for singly reinforced rectangular sections. Upper limit of curves is at ρ_{\max} (tensile strain of 0.004)

Reinforcement ratio, ρ

UIZ	
FOR (
HARTS	
NCE CI	
EFEREI	
Y	

9

				\$
		V _u ≤ ¢Vc 2	φV _c ≥ V _u > <mark>φV_c</mark> 2	$V_{\rm u} > \phi V_{\rm c}$
Required area of s	tirrups, Av	euou	50bws fy	<u>(Vu − ¢Vc)s</u> ¢fyd
	Required	Ι	Avfy 50bw	$\frac{\phi A_v f_y d}{V_u - \phi V_c}$
	Recommended Minimum [†]	-		4 in.
Stirrup spacing, s			र	L T
	Maximumtt	I	2 or 24 in.	$\frac{U}{2}$ or 24 in. for $(V_u - \phi V_c) \le \phi 4\sqrt{f_c} b_w d$
	(ACI 11.5.4)			$\frac{d}{4}$ or 12 in. for $(V_u - \phi V_c) > \phi 4\sqrt{f_c'} b_w d$

Table 3-8 ACI Provisions for Shear Design*

"Members subjected to shear and flexure only; $\phi V_c = \phi 2 \sqrt{f_c} b_w d$, $\phi = 0.75$ (ACI 11.3.1.1)

"*A_v = 2 × A_b for U stirrups; $f_y \le 60$ ksi (ACI 11.5.2) †A practical limit for minimum spacing is d/4 ††Maximum spacing based on minimum shear reinforcement (= A_vf_y50b_w) must also be considered (ACI 11.5.5.3). TABLE 13.6 Areas Provided By Spaced Reinforcement

Bat			Area	Provide	d (in.²/fi	t width)			
spacing	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11
3	0.44	0.80	1.24	1.76	2.40	3.16	4.00		
3.5	0.38	0.69	1.06	1.51	2.06	2.71	3.43	4.35	
4	0.33	09.0	0.93	1.32	1.80	2.37	3.00	3.81	4.68
4.5	0.29	0.53	0.83	1.17	1.60	2.11	2.67	3.39	4.16
5	0.26	0.48	0.74	1.06	1.44	1.89	2.40	3.05	3.74
5.5	0.24	0.44	0.68	0.96	1.31	1.72	2.18	2.77	3.40
9	0.22	0.40	0.62	0.88	1.20	1.58	2.00	2.54	3.12
7	0.19	0.34	0.53	0.75	1.03	1.35	1.71	2.18	2.67
8	0.16	0.30	0.46	0.66	0.90	1.18	1.50	1.90	2.34
6	0.15	0.27	0.41	0.59	0.80	1.05	1.33	1.69	2.08
10	0.13	0.24	0.37	0.53	0.72	0.95	1.20	1.52	1.87
11	0.12	0.22	0.34	0.48	0.65	0.86	1.09	1.38	1.70
12	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	1.56
13	0.10	0.18	0.29	0.40	0.55	0.73	0.92	1.17	1.44
14	0.09	0.17	0.27	0.38	0.51	0.68	0.86	1.09	1.34
15	0.09	0.16	0.25	0.35	0.48	0.63	0.80	1.01	1.25
16	0.08	0.15	0.23	0.33	0.45	0.59	0.75	0.95	1.17
18	0.07	0.13	0.21	0.29	0.40	0.53	0.67	0.85	1.04
24	0.05	0.10	0.15	0.22	0.30	0.39	0.50	0.63	0.78

202 012		Minimum th	nickness, h	
	Simply sup- ported	One end continuous	Both ends continuous	Cantilever
Member	Members no other constru deflections.	ot supporting oution likely to	or attached to be damaged	partitions or by large
Solid one- way slabs	<i>ℓ/2</i> 0	<i>ℓ</i> /24	£/28	£/10
Beams or ribbed one- way slabs	£/16	£/18.5	<i>ℓ</i> /21	l /8
Notes: 1) Span lengt 2) Values give	h l is in inches. en shall be used	d directly for me	embers with nor	malweight con-

NONPRESTRESSED BEAMS OR ONE-WAY SLABS

TABLE 9.5(a)-MINIMUM THICKNESS OF

crete ($w_c = 145$ lb/ft⁻) and grade ou removement of weight in the range 90-120 values shall be modified as follows: values shall be modified as follows: a For structural lightweight concrete having unit weight in the range 90-120 lb/ft³, the values shall be multiplied by (1.65 – 0.005 w_c) but not less than 1.09, where w_c is the unit weight in lb/ft³. b) For f_y other than 60,000 psi, the values shall be multiplied by (0.4 + f_y/100,000).