Centers of Gravity - Centroids

Notation:

A = name for area

C = designation for channel section

= name for centroid

 F_z = force component in the z direction

L = name for length

O = name for reference origin

 Q_x = first moment area about an x axis

(using y distances)

 Q_y = first moment area about an y axis

(using x distances)

t = name for thickness

 t_w = thickness of web of wide flange

W = name for force due to weight

= designation for wide flange section

x = horizontal distance

 \bar{x} = the distance in the x direction from a reference axis to the centroid of a

shape

 \hat{x} = the distance in the x direction from a reference axis to the centroid of a composite shape

y = vertical distance

 \overline{y} = the distance in the y direction from a reference axis to the centroid of a shape

 \hat{y} = the distance in the y direction from a reference axis to the centroid of a composite shape

z = distance perpendicular to x-y plane

J = symbol for integration

 Δ = calculus symbol for small quantity

 γ = density of a material (unit weight)

 Σ = summation symbol

- The cross section shape and how it resists bending and twisting is important to understanding beam and column behavior.
- The *center of gravity* is the location of the equivalent force representing the total weight of a body comprised of particles that each have a mass gravity acts upon.

Resultant force: Over a body of constant thickness in x and y

$$\sum F_z = \sum_{i=1}^n \Delta W_i = \mathbf{W} \qquad \qquad \mathbf{W} = \int d\mathbf{W}$$

Location: \bar{x} , \bar{y} is the equivalent location of the force W from all ΔW_i 's over all x & y locations (with respect to the moment from each force) from:

$$\sum M_{y} = \sum_{i=1}^{n} x_{i} \Delta W_{i} = \bar{x} W \qquad \bar{x} W = \int x dW \Rightarrow \bar{x} = \frac{\int x dW}{W} \text{ OR } \qquad \bar{x} = \frac{\sum (x \Delta W)}{W}$$

$$\sum M_x = \sum_{i=1}^n y_i \Delta W_i = \bar{y} \mathbf{W} \qquad \bar{y} \mathbf{W} = \int y dW \Rightarrow \bar{y} = \frac{\int y dW}{\mathbf{W}} \text{ OR } \qquad \boxed{\bar{y} = \frac{\sum (y \Delta W)}{\mathbf{W}}}$$

• The *centroid of an area* is the average x and y locations of the area particles

For a discrete shape (ΔA_i) of a uniform thickness and material, the weight can be defined as:

$$\begin{split} \Delta W_i &= \gamma t \Delta A_i \quad \text{where:} \\ \gamma \text{ is weight per unit } \textbf{volume} \; (= \text{specific weight) with units of } \underline{N/m^3} \text{ or } \underline{lb/ft^3} \\ t \Delta A_i \text{ is the volume} \end{split}$$

So if $W = \gamma t A$:

$$\bar{x} \gamma A = \int x \gamma dA \implies \bar{x} A = \int x dA \text{ OR } \left[\bar{x} = \frac{\sum (x \Delta A)}{A} \right] \text{ and similarly } \left[\bar{y} = \frac{\sum (y \Delta A)}{A} \right]$$

Similarly, for a line with constant cross section, a ($\Delta W_i = \gamma a \Delta L_i$):

$$\bar{x}L = \int x dL \text{ OR } \qquad \boxed{\bar{x} = \frac{\sum (x \Delta L)}{L}} \quad \text{and} \quad \bar{y}L = \int y dL \text{ OR } \qquad \boxed{\bar{y} = \frac{\sum (y \Delta L)}{L}}$$

- \overline{x} , \overline{y} with respect to an x, y coordinate system is the centroid of an area AND the center of gravity for a body of uniform material and thickness.
- The *first moment of the area* is like a force moment: and is the **area** multiplied by the perpendicular distance to an axis.

$$Q_x = |ydA = \overline{y}A \quad Q_y = |xdA = \overline{x}A$$

• <u>Centroids of Common Shapes</u>

Centroids of Common Shapes of Areas and Lines

Shape		\bar{x}	\overline{y}	Area
Triangular area	\overline{y} \overline{x} \overline{x} b	$\frac{b}{3}$	$\frac{h}{3}$	$\frac{bh}{2}$
Quarter-circular area	C C	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area	\bar{x} \bar{y} \bar{y}	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Semiparabolic area		3 <u>a</u> 8	$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	\bar{y} \bar{y} \bar{y} \bar{y}	0	$\frac{3h}{5}$	$\frac{4ah}{3}$
Parabolic span- drel	$y = kx^{2}$ \overline{y} \overline{y}	$\frac{3a}{4}$	$\frac{3h}{10}$	<u>ah</u> 3
Circular sector	α	$\frac{2r\sin\alpha}{3\alpha}$	0	αr ²
Quarter-circular arc	C C F	$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc		0	$\frac{2r}{\pi}$	πr
Arc of circle	$\frac{1}{\alpha}$	$\frac{r \sin \alpha}{\alpha}$	0	2ar

Symmetric Areas

- An area is symmetric with respect to a line when every point on one side is mirrored on the other. The line divides the area into equal parts and the centroid will be on that axis.
- An area can be symmetric to a *center point* when every (x,y) point is matched by a (-x,-y)point. It does not necessarily have an axis of symmetry. The center point is the *centroid*.
- If the symmetry line is on an axis, the centroid location is on that axis (value of 0). With double symmetry, the centroid is at the intersection.
- Symmetry can also be defined by areas that match across a line, but are 180° to each other.

Basic Steps

- 1. Draw a reference origin.
- 2. Divide the area into basic shapes
- 3. Label the basic shapes (components)
- 4. Draw a table with headers of Component, Area, \bar{x} , $\bar{x}A$, \bar{y} , $\bar{y}A$
- 5. Fill in the table value
- 6. Draw a summation line. Sum all the areas, all the $\bar{x}A$ terms, and all the $\bar{y}A$ terms
- 7. Calculate \hat{x} and \hat{y}

Composite Shapes

If we have a shape made up of basic shapes that we know centroid locations for, we can find an "average" centroid of the areas.

$$\hat{x}A = \hat{x}\sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \overline{x}_i A_i \qquad \qquad \hat{y}A = \hat{y}\sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \overline{y}_i A_i$$

$$\hat{y}A = \hat{y}\sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \overline{y}_i A_i$$

OR
$$\hat{x} = \frac{\Sigma \bar{x}A}{A}$$
 $\hat{y} = \frac{\Sigma \bar{y}A}{A}$

$$\hat{y} = \frac{\Sigma \overline{y} A}{A}$$

 A_2

Centroid values can be negative. Area values can be negative (holes)

Example 1 (pg 243)

Example Problem 7.1: Centroids (Figures 7.5 and 7.6)

Determine the centroidal x and y distances for the composite area shown. Use the lower left corner of the trapezoid as the reference origin.

Component	Area (ΔA) (in. ²)	\bar{x} (in.)	$\bar{x}\Delta A(in.^3)$	<u> </u> <u> </u>	$\bar{y}\Delta A(in.^3)$
9" 5 x (a)	$\frac{9''(3'')}{2} = 13.5 \text{ in.}^2$	6"	81 in. ³	4"	5 4 in. ³
9" 3" x (b)	9" (3") = 27 in. ²	4.5"	121.5 in. ³	1.5"	40.5 in. ³
	$A = \sum \Delta A = 40.5 \text{ in.}^2$		$\sum_{\overline{x} \triangle A} = 202.5 \text{ in.}^3$		$\sum \overline{y} \Delta A = 94.5 \text{ in.}^3$

$$\hat{x} = \frac{202.5in^3}{40.5in^2}$$
$$= 5in$$

$$\hat{y} = \frac{94.5in^3}{40.5in^2} = 2.33in$$

Example 2 (pg 245)

Example Problem 7.3b (Figure 7.13)

An alternate method that can be employed in solving this problem is referred to as the *negative area method*.

A 6" thick concrete wall panel is precast to the dimensions as shown. Using the lower left corner as the reference origin, determine the center of gravity (centroid) of the panel.

