Common Design Loads in Building Codes

Notation:

```
A = name for area R = rainwater load or ice water load
AASHTO = American Association of State
    Highway and Transportation
    Officials
ASCE = American Society of Civil
    Engineers
ASD = allowable stress design
D = dead load symbol
E = earthquake load symbol
F = hydraulic loads from fluids symbol
H = hydraulic loads from soil symbol
L = live load symbol
L
LRFD = load and resistance factor design < = density or unit weight
```


Design Codes in General

Design codes are issued by a professional organization interested in insuring safety and standards. They are legally backed by the engineering profession. Different design methods are used, but they typically defined the load cases or combination, stress or strength limits, and deflection limits.

Load Types

Loads used in design load equations are given letters by type:
D = dead load
$\mathrm{L}=$ live load
$\mathrm{L}_{\mathrm{r}}=$ live roof load
$\mathrm{W}=$ wind load
$\mathrm{S}=$ snow load
$\mathrm{E}=$ earthquake load
$\mathrm{R}=$ rainwater load or ice water load
$\mathrm{T}=$ effect of material \& temperature
$\mathrm{H}=$ hydraulic loads from soil
$\mathrm{F}=$ hydraulic loads from fluids

Determining Dead Load from Material Weights

Material density is a measure of how much mass in a unit volume causes a force due to gravity. The common symbol for density is γ. When volume, V , is multiplied by density, a force value results:

$$
W=\gamma \cdot V
$$

Materials "weight" can also be presented as a weight per unit area or length. This takes into account that the volume is a thickness times an area: $V=t \cdot A$; so the calculation becomes:
$W=($ weight/unit area) $\cdot A$
$w=($ weight/unit volume $) \cdot t$ which is a weight per unit area
$w=($ weight/unit volume $) \cdot A$ which is a weight per unit length

Minimum Concentrated Loads

adapted from SEI/ASCE 7-10: Minimum Design Loads for Buildings and Other Structures

Location	Concentrated load lb (kN)
Catwalks for maintenance access	300 (1.33)
Elevator machine room grating (on area of 2 in . by 2 in . (50 mm by 50 mm))	300 (1.33)
Finish light floor plate construction (on area of 1 in . by 1 in . $(25 \mathrm{~mm} \text { by } 25 \mathrm{~mm}))$	200 (0.89)
Hospital floors	1,000 (4.45)
Library floors	1,000 (4.45)
Manufacturing	
Light	2,000 (8.90)
Heavy	3,000 (13.40)
Office floors	2,000 (8.90)
Awnings and canopies	
Skeleton structure with fabric	300 (1.33)
Support frame with screen enclosure	200 (0.89)
Roofs - primary members and subject to maintenance workers	300 (1.33)
School floors	1,000 (4.45)
Sidewalks, vehicular driveways, and yards subject to trucking (over wheel area of 4.5 in . by 4.5 in . ($114 \mathrm{~mm} \times 114 \mathrm{~mm}$)	8,000 (35.60)
Stairs and exit ways on area of 2 in . by 2 in . (50 mm by 50 mm) nonconcurrent with uniform load	300 (1.33)
Store floors	1,000 (4.45)

Allowable Stress Design (ASD)

Combinations of service (also referred to as working) loads are evaluated for maximum stresses and compared to allowable stresses. When wind loads are involved, the allowable stresses are typically allowed to increase by $1 / 3$. The allowed stresses are some fraction of limit stresses.

ASCE-7 (2010) combinations of loads:

1. D
2. $D+L$
3. $D+0.75\left(L_{r}\right.$ or S or $\left.R\right)$
4. $D+0.75 L+0.75\left(L_{r}\right.$ or S or $\left.R\right)$
5. $D+(0.6 W$ or $0.7 E)$

6a. $D+0.75 L+0.75(0.6 W)+0.75\left(L_{r}\right.$ or S or $\left.R\right)$
6b. $D+0.75 L+0.75(0.7 E)+0.75 S$
7. $0.6 D+0.6 W$
8. $0.6 D+0.7 E$

When F loads are present, they shall be included with the same load factor as dead load D in 1 through 6 and 8 .

When H loads are present, they shall have a load factor of 1.0 when adding to load
effect, or 0.6 when resisting the load when permanent.

Load and Resistance Factor Design - LRFD

Combinations of loads that have been factored are evaluated for maximum loads, moments or stresses. These factors take into consideration how likely the load is to happen and how often. This "imaginary" worse case load, moment or stress is compared to a limit value that has been modified by a resistance factor. The resistance factor is a function of how "comfortable" the design community is with the type of limit, ie. yielding or rupture...

ASCE-7 (2010) combinations of factored nominal loads:

1. 1.4 D
2. $1.2 D+1.6 L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
3. $1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(L$ or $0.5 W)$
4. $1.2 D+1.0 W+L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$
5. $1.2 D+1.0 E+L+0.2 S$
6. $0.9 D+1.0 W$
7. $0.9 D+1.0 E$

When F loads are present, they shall be included with the same load factor as dead load D in 1 through 5 and 7 .

When H loads are present, they shall have a load factor of 1.6 when adding to load effect, or 0.9 when resisting the load when permanent.

Minimum Uniformly Distributed Live Loads
adapted from SEI/ASCE 7-10: Minimum Design Loads for Buildings and Other Structures

Location	Uniform load $\mathrm{psf}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
Apartments (see Residential)	
Access floor systems	$50(2.4)$
Office use	$100(4.79)$
Computer use	$150(7.18)$
Armories and drill rooms	$60(2.87)$
Assembly areas and theaters	$100(4.79)$
Fixed seats (fastened to floor)	$100(4.79)$
Lobbies	$100(4.79)$
Movable seats	$150(7.18)$
Platforms (assembly)	
Stage floors	

Location	Uniform load psf ($\mathrm{kN} / \mathrm{m}^{2}$)
Balconies and decks	1.5 times the live load for the occupancy served. Not required to exceed 100 psf ($4.79 \mathrm{kN} / \mathrm{m} 2$)
Catwalks for maintenance access	40 (1.92)
Corridors	
First floor	100 (4.79)
Other floors, same as occupancy served except as indicated	
Dining rooms and restaurants	100 (4.79)
Dwellings (see Residential)	
Elevator machine room grating (on area of 2 in . by 2 in . (50 mm by 50 mm)	300 (1.33)
Finish light floor plate construction (on area of 1 in . by 1 in . (25 mm by 25 mm))	200 (0.89)
Fire escapes	100 (4.79)
On single-family dwellings only	40 (1.92)
Garages	
Passenger vehicles only	40 (1.92)
Helipads	60 (2.87)
Hospitals	
Operating rooms, laboratories	60 (2.87)
Patient rooms	40 (1.92)
Corridors above first floor	80 (3.83)
Hotels (see Residential)	
Libraries	
Reading rooms	60 (2.87)
Stack rooms	150 (7.18)
Corridors above first floor	80 (3.83)
Manufacturing	
Light	125 (6.00)
Heavy	250 (11.97)
Office buildings	
File and computer rooms shall be designed for heavier loads based on anticipated occupancy	
Lobbies and first floor corridors	100 (4.79)
Offices	50 (2.40)
Corridors above first floor	80 (3.83)
Penal institutions	
Cell blocks	40 (1.92)
Corridors	100 (4.79)
Recreational uses	
Bowling alleys, poolrooms, and similar uses	75 (3.59)
Dance halls and ballrooms	100 (4.79)
Gymnasiums	100 (4.79)
Reviewing stands, grandstands, and bleachers	100 (4.79)
Stadiums and arenas with fixed seats (fastened to the floor)	60 (2.87)
Residential	
One- and two-family dwellings	
Uninhabitable attics without storage	10 (0.48)
Uninhabitable attics with storage	20 (0.96)
Habitable attics and sleeping areas	30 (1.44)
All other areas except stairs	40 (1.92)
All other residential occupancies	
Private rooms and corridors serving them	40 (1.92)
Public rooms and corridors serving them	100 (4.79)

Location	Uniform load psf(kN/m$\left.{ }^{2}\right)$
Roofs	$20(0.96 \mathrm{n}$
Ordinary flat, pitched, and curved roofs	$100(4.79)$
Roofs used for roof gardens	Same as occupancy served
Roofs used for assembly purposes	As approved by authority having jurisdiction
Roofs used for other occupancies	$5(0.24)$ nonreducible
Awnings and canopies	$5(0.24)$ nonreducible
Fabric construction supported by a skeleton structure	and applied to the roof frame
Screen enclosure support frame	members only, not the screen
All other construction	$20(0.96)$
Classrooms	$40(1.92)$
Corridors above first floor	$80(3.83)$
First-floor corridors	$100(4.79)$
Scuttles, skylight ribs, and accessible ceilings	$200(0.89)$
Sidewalks, vehicular driveways, and yards subject to trucking	$250(11.97)$
Stairs and exit ways	$100(4.79)$
One- and two-family dwellings only	$40(1.92)$
Storage areas above ceilings	$20(0.96)$
Storage warehouses (shall be designed for heavier loads if required for	
anticipated storage)	$125(6.00)$
Light	$250(11.97)$
Heavy	
Stores	
Retail	$100(4.79)$
First floor	$75(3.59)$
Upper floors	$125(6.00)$
Wholesale, all floors	$60(2.87)$
Walkways and elevated platforms (other than exit ways)	$100(4.79)$
Yards and terraces, pedestrian	
Live load reductions are not permitted for specific types (see code).	
Some occupancies must be designed for appropriate loads as approved by the authority having jurisdiction.	
Library stack room floors have specified limitations (see code)	
AASHTO lane loads should also be considered where appropriate.	

Building Material Weights-AISC Manual of Load and Resistance Factor Design, $3^{\text {rd }}$ ed.

					훟
			Sí		
					se of gases to air at $0^{\circ} \mathrm{C}$ and 760 xcept where stated that weights

Example 1
Determine the controlling load combinations(s) using AISC-LRFD for a building column subject to the following service or nominal (unfactored) axial compressive loads: $D=30 \mathrm{k}, L=50 \mathrm{k}, L_{r}=10 \mathrm{k}, W=25 \mathrm{k}, E=40 \mathrm{k}$

Using a spreadsheet analysis:

LRFD (ASCE-7)		FACTORED LOAD
$1.4 D$		
$1.4 D$	=	42 kips
$\begin{gathered} 1.2 D+1.6 L+0.5\left(L_{r} \text { or } S \text { or } R\right) \\ 1.2 D+1.6 L+0.5 L_{r} \end{gathered}$	=	121
$1.2 D+1.6\left(L_{r}\right.$ or S or $\left.R\right)+(L$ or $0.5 W)$		
$1.2 D+1.6 L_{r}+L$	=	102
$1.2 D+1.6 L_{r}+0.5 W$	=	64.5
$1.2 D+1.6 L_{r}-0.5 W$	=	39.5
$1.2 D+1.0 W+L+0.5\left(L_{r}\right.$ or S or $\left.R\right)$		
$1.2 D+1.0 W+L+0.5 L_{r}$	$=$	116
$1.2 D-1.0 W+L+0.5 L_{r}$	=	66
$1.2 D+1.0 E+L+0.2 S$		
$1.2 D+1.0 E+L$	=	126
$1.2 D-1.0 E+L$	=	46
$0.9 D+1.0 W$		
$0.9 \mathrm{D}+1.0 \mathrm{~W}$	=	52
0.9D-1.0W	=	2
$0.9 D+1.0 E$		
$0.9 D+1.0 E$	$=$	67
$0.9 D-1.0 E$	=	-13

Critical Factored Load 126 kips (C) -13 kips (T)

Example 2

EXAMPLE 2-4

Determine factored loads for the beam shown in Figure 2-16.

Solution

For the left half of the beam:

$$
\begin{aligned}
& w_{u 1}=1.2 w_{D}+1.6 w_{L} \\
& w_{u 1}=1.2 \times 1.0+1.6 \times 2.0=4.4 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

For the right half of the beam:

$$
\begin{aligned}
& w_{u 2}=1.2 w_{D}+1.6 w_{L} \\
& w_{u}=1.2 \times 1.0+1.6 \times 0=1.2 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

FIGURE 2-16 Example 2-4 (service loads).

FIGURE 2-17 Example 2-4 (factored loads).

The concentrated load is a live load only:

$$
\begin{aligned}
& P_{u}=1.2 P_{D}+1.6 P_{L} \\
& P_{u}=1.2 \times 0+1.6 \times 10=16 \mathrm{kip}
\end{aligned}
$$

The factored loads on the beam are shown in Figure 2-17.

