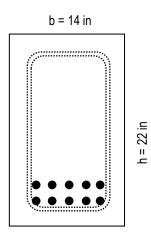
ARCH 331: Practice Quiz 6

Note: No aids are allowed for part 1. One side of a letter sized paper with notes is allowed during part 2, along with a silent, **non-programmable** calculator. There are reference charts for part 2, shown on pages 2-3.

Clearly show your work and answer.

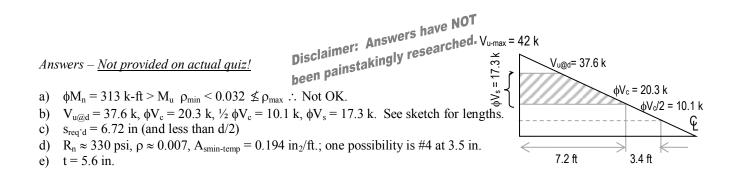

Part 1) Worth 5 points (conceptual questions)

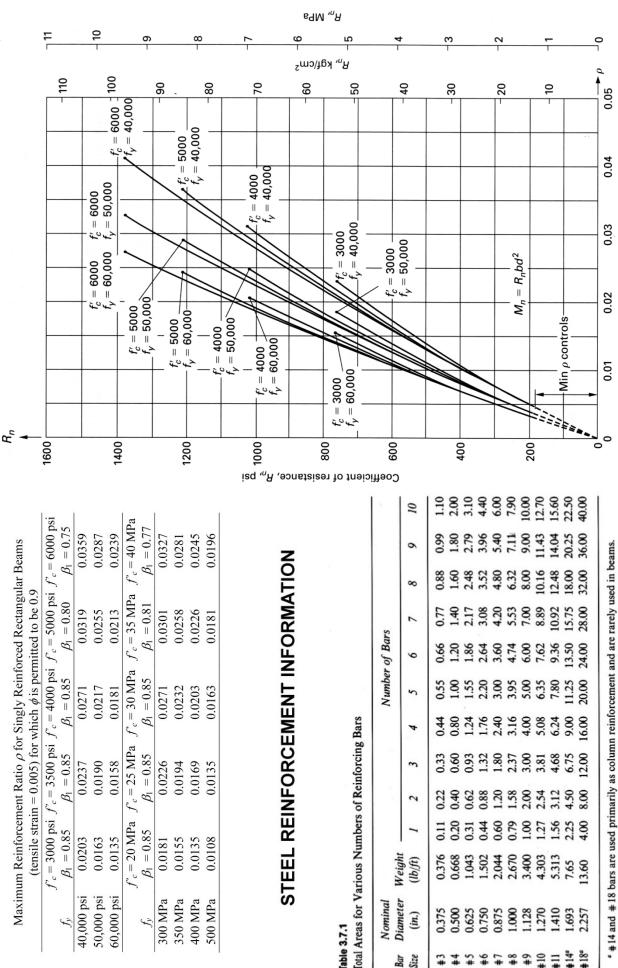
Part 2) Worth 45 points

(*NOTE:* The member size, load magnitudes, reinforcement, and materials can and will be changed for the quiz! The beam supports will not change.)

A 28 ft simply supported reinforced concrete beam (shown) is 14 in. wide by 22 in. deep with 10-#8 bars (two layers). The effective depth, *d*, is 17.625 in.. It has 3000 psi concrete and Grade 40 reinforcement ($f_y = 40$ ksi). There will be #3 U stirrups.

- a) Determine if the beam is adequate for flexure and reinforcing requirements when $M_u = 294$ k-ft.
- b) Determine the key values for shear, and determine the lengths over which the beam requires stirrups for strength and stirrups for crack control. $V_{u-max} = 42 \text{ k}$ when the beam has a total factored distributed load of 3000 lb/ft.




c) Determine the spacing required for strength with the maximum design shear.

A 9 in. thick solid one-way continuous slab (no figure) supported by beams with a span of 13 ft is to be designed for a maximum factored moment of 19 k-ft/ft of width. It has 3000 psi concrete and Grade 60 reinforcement ($f_y = 60$ ksi). Assume d = 8 in.

- d) Determine the required reinforcement and spacing in both directions. (*Note: checking moment capacity adequacy <u>is not</u> required for this part.)*
- e) Find the minimum thickness if deflection will not be computed.

REFERENCE CHARTS FOR QUIZ 6

Reinforcement ratio, ρ

#14° #18ª

#10 #11

#5 #1

#3 #

Bar

Su2014abn

2

nesign	$V_{\rm u} > \phi V_{\rm c}$	مر _o – مرد) S(مر – مرد)	<u>-2040 - η</u> ρ ^γ ξηνφ	4 in.	$\frac{d}{2} \text{ or } 24 \text{ in } \text{ for } \left(V_u - \phi V_c\right) \leq \phi 4\sqrt{f_c} \text{ b}_w d$	$\frac{d}{4}$ or 12 in. for $\left(V_{u} - \phi V_{c}\right) > \phi 4 \sqrt{f_{c}^{c}} b_{w} d$
	φV _c ≥ V _u > ^{φV_c} 2	50bws fy	Avfy 50bw		<mark>d</mark> or 24 in.	,
	V _u ≤ ¢Vc 2	none	Ι	—	I	
I AUIE		tirrups, Av	Required	Recommended Minimum [†]	Maximum ^{††}	(ACI 11.5.4)
		Required area of stirrups, Av			Stirrup spacing, s	

Table 3-8 ACI Provisions for Shear Design*

•Members subjected to shear and flexure only; $\phi V_c = \phi 2 \sqrt{f_c'} b_w d$, $\phi = 0.75$ (ACI 11.3.1.1) •*A_V = 2 × A_b for U stirrups; $f_y \le 60$ ksi (ACI 11.5.2) †A practical limit for minimum spacing is d/4 ††Maximum spacing based on minimum shear reinforcement (= Avfy50b_w) must also be considered

(ACI 11.5.5.3).

NONPRESTRESSED BEAMS OR ONE-WAY SLABS TABLE 9.5(a)-MINIMUM THICKNESS OF UNLESS DEFLECTIONS ARE COMPUTED

3.82.042	101111111111	Minimum t	Minimum thickness, h	
	Simply sup- ported	One end continuous	Both ends continuous	Cantilever
Member	Members no other constru deflections.	ot supporting oution likely to	Members not supporting or attached to partitions or other construction likely to be damaged by large deflections.	partitions or by large
Solid one- way slabs	<i>ℓ/2</i> 0	<i>ℓ</i> /24	£/28	l /10
Beams or ribbed one- way slabs	e/16	l /18.5	<i>ℓ</i> /21	l /8
Notes: 1) Span length 2) Values give crete ($w_c = 14$	Notes: 1) Span length ℓ is in inches. 2) Values given shall be used directly for members with normalweight con- crete ($w_{c} = 145$ Ib/ft ³) and Grade 60 reinforcement. For other conditions, the	d directly for me	embers with nor ment. For other	malweight con

a) For structural lightweight concrete having unit weight in the range 90-120 lb/ft³, the values shall be multiplied by (1.65 – 0.005 w_c) but not less than 1.09, where w_c is the unit weight in lb/ft³. b) For t_y other than 60,000 psi, the values shall be multiplied by (0.4 + t_y /100,000).

TABLE 13.6 Areas Provided Bv Spaced Reinforcement

IABLE 13.0	Areas Provided by spaced Reinforcement	rovide		oaced	Heintoi	cemen			
Bat			Area	Provide	Area Provided (in. ² /ft width)	t width)			
(in.)	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11
3	0.44	0.80	1.24	1.76	2.40	3.16	4.00		
3.5	0.38	0.69	1.06	1.51	2.06	2.71	3.43	4.35	
4	0.33	0.60	0.93	1.32	1.80	2.37	3.00	3.81	4.68
4.5	0.29	0.53	0.83	1.17	1.60	2.11	2.67	3.39	4.16
5	0.26	0.48	0.74	1.06	1.44	1.89	2.40	3.05	3.74
5.5	0.24	0.44	0.68	0.96	1.31	1.72	2.18	2.77	3.40
9	0.22	0.40	0.62	0.88	1.20	1.58	2.00	2.54	3.12
7	0.19	0.34	0.53	0.75	1.03	1.35	1.71	2.18	2.67
8	0.16	0.30	0.46	0.66	0.90	1.18	1.50	1.90	2.34
6	0.15	0.27	0.41	0.59	0.80	1.05	1.33	1.69	2.08
10	0.13	0.24	0.37	0.53	0.72	0.95	1.20	1.52	1.87
11	0.12	0.22	0.34	0.48	0.65	0.86	1.09	1.38	1.70
12	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	1.56
13	0.10	0.18	0.29	0.40	0.55	0.73	0.92	1.17	1.44
14	0.09	0.17	0.27	0.38	0.51	0.68	0.86	1.09	1.34
15	0.09	0.16	0.25	0.35	0.48	0.63	0.80	1.01	1.25
16	0.08	0.15	0.23	0.33	0.45	0.59	0.75	0.95	1.17
18	0.07	0.13	0.21	0.29	0.40	0.53	0.67	0.85	1.04
24	0.05	0.10	0.15	0.22	0.30	0.39	0.50	0.63	0.78