Centers of Gravity - Centroids

Notation	:
----------	---

A C	 name for area designation for channel section name for centroid 	x	= the distance in the x direction from a reference axis to the centroid of a composite shape
F_z	= force component in the z direction	у	= vertical distance
L	= name for length	\overline{y}	= the distance in the y direction from
0	= name for reference origin	-	a reference axis to the centroid of a
Q_x	= first moment area about an x axis		shape
	(using y distances)	\hat{v}	= the distance in the y direction from
Q_y	= first moment area about an y axis (using x distances)	v	a reference axis to the centroid of a composite shape
t	= name for thickness	Z	= distance perpendicular to $x-y$ plane
t_w	= thickness of web of wide flange	ſ	= symbol for integration
W	= name for force due to weight	, 1	= calculus symbol for small quantity
	= designation for wide flange section		= denotion of a material (constrained)
x	= horizontal distance	γ	= density of a material (unit weight)
\overline{x}	= the distance in the x direction from	Σ	= summation symbol
	a reference axis to the centroid of a		
	shape		

- The cross section shape and how it resists bending and twisting is important to understanding beam and column behavior.
- The *center of gravity* is the location of the equivalent force representing the total weight of a body comprised of particles that each have a mass gravity acts upon.

Resultant force: Over a body of constant thickness in x and y

$$\sum F_z = \sum_{i=1}^n \Delta W_i = W \qquad \qquad W = \int dW$$

Location: \bar{x} , \bar{y} is the equivalent location of the force W from all ΔW_i 's over all x & y locations (with respect to the moment from each force) from:

$$\sum M_{y} = \sum_{i=1}^{n} x_{i} \Delta W_{i} = \bar{x} W \qquad \bar{x} W = \int x dW \Rightarrow \bar{x} = \frac{\int x dW}{W} \text{ OR } \qquad \boxed{\bar{x} = \frac{\sum (x \Delta W)}{W}}$$
$$\sum M_{x} = \sum_{i=1}^{n} y_{i} \Delta W_{i} = \bar{y} W \qquad \bar{y} W = \int y dW \Rightarrow \bar{y} = \frac{\int y dW}{W} \text{ OR } \qquad \boxed{\bar{y} = \frac{\sum (y \Delta W)}{W}}$$

• The *centroid of an area* is the average x and y locations of the area particles

For a discrete shape (ΔA_i) of a uniform thickness and material, the weight can be defined as:

 $\begin{array}{ll} \Delta W_i = \gamma t \Delta A_i & \text{where:} \\ \gamma \text{ is weight per unit volume (= specific weight) with units of } \underline{N/m^3} \text{ or } \underline{lb/ft^3} \\ t \Delta A_i \text{ is the volume} \end{array}$

So if $W = \gamma t A$:

$$\bar{x}\gamma A = \int x\gamma dA \Rightarrow \bar{x}A = \int x dA \text{ OR } \qquad \overline{\bar{x}} = \frac{\sum(x\Delta A)}{A} \text{ and similarly } \overline{\bar{y}} = \frac{\sum(y\Delta A)}{A}$$

Similarly, for a line with constant cross section, $a (\Delta W_i = \gamma a \Delta L_i)$:

$$\overline{x}L = \int xdL \text{ OR } \qquad \overline{\overline{x}} = \frac{\Sigma(x\Delta L)}{L} \quad \text{and} \quad \overline{y}L = \int ydL \text{ OR } \qquad \overline{\overline{y}} = \frac{\Sigma(y\Delta L)}{L}$$

- \bar{x} , \bar{y} with respect to an x, y coordinate system is the centroid of an area AND the center of gravity for a body of uniform material and thickness.
- The *first moment of the area* is like a force moment: and is the **area** multiplied by the perpendicular distance to an axis.

• <u>Centroids of Common Shapes</u>

Centroids of Common Shapes of Areas and Lines

Shape		x	\overline{y}	Area
Triangular area	$\frac{1}{\overline{y}} \xrightarrow{b} + \frac{b}{2} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} b$	$\frac{b}{3}$	$\frac{h}{3}$	$\frac{bh}{2}$
Quarter-circular area	C C C	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Semiparabolic area	Semiparabolic area		$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	O \overline{x} \overline{x} \overline{y} O a \overline{a}	0	$\frac{3h}{5}$	$\frac{4ah}{3}$
Parabolic span- drel	$y = kx^{2}$ $y = kx^{2}$ h \bar{y}	$\frac{3a}{4}$	$\frac{3h}{10}$	<u>ah</u> 3
Circular sector	O \overline{x} \overline{x} \overline{x}	$\frac{2r\sin\alpha}{3\alpha}$	0	αr^2
Quarter-circular arc		$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc	Semicircular arc $O = \overline{x} \rightarrow 0$		$\frac{2r}{\pi}$	πr
Arc of circle	α C α C α	$\frac{r \sin \alpha}{\alpha}$	0	2ar

- <u>Symmetric Areas</u>
 - An area is symmetric with respect to a line when every point on one side is mirrored on the other. The line divides the area into equal parts and the centroid will be on that axis.
 - An area can be symmetric to a *center point* when every (x,y) point is matched by a (-x,-y) point. It does not necessarily have an axis of symmetry. The center point is the *centroid*.
 - If the symmetry line is on an axis, the centroid location is on that axis (value of 0). With double symmetry, the centroid is at the intersection.
 - Symmetry can also be defined by areas that match across a line, but are 180° to each other.

Basic Steps

- 1. Draw a reference origin.
- 2. Divide the area into basic shapes
- 3. Label the basic shapes (components)
- 4. Draw a table with headers of *Component*, Area, \bar{x} , $\bar{x}A$, \bar{y} , $\bar{y}A$
- 5. Fill in the table value
- 6. Draw a summation line. Sum all the areas, all the $\bar{x}A$ terms, and all the $\bar{y}A$ terms
- 7. Calculate \hat{x} and \hat{y}
- <u>Composite Shapes</u>

If we have a shape made up of basic shapes that we know centroid locations for, we can find an "average" centroid of the areas.

$$\hat{x}A = \hat{x}\sum_{i=l}^{n} A_{i} = \sum_{i=l}^{n} \overline{x}_{i}A_{i} \qquad \qquad \hat{y}A = \hat{y}\sum_{i=l}^{n} A_{i} = \sum_{i=l}^{n} \overline{y}_{i}A_{i}$$
OR
$$\hat{x} = \frac{\Sigma \overline{x}A}{A} \qquad \qquad \hat{y} = \frac{\Sigma \overline{y}A}{A}$$

<u>Centroid values can be negative.</u> <u>Area values can be negative (holes)</u>

3"

oʻ

у

CG

х

у

<u>y</u>=2.33"

0

3"

3"

х

Π

9"

Example 1 (pg 243)

Example Problem 7.1: Centroids (Figures 7.5 and 7.6)

Determine the centroidal x and y distances for the composite area shown. Use the lower left corner of the trapezoid as the reference origin.

ale reference origin.			G g			x=5"
Component	Area (ΔA) (in. ²)	\overline{x} (in.)	$\overline{x}\Delta A(in.^3)$	\overline{y} (in.)	$\overline{y}\Delta A(in.^3)$	
$ \begin{array}{c} y \\ g'' \\ g'' \\ x \\ (a) \end{array} $	$\frac{9''(3'')}{2} = 13.5 \text{ in.}^2$	6"	81 in. ³	4"	54 in. ³	$\hat{x} = \frac{202.5in^3}{40.5in^2} = 5in$ $\hat{y} = \frac{94.5in^3}{40.5in^2}$
y 9" 3" x ₂ (b)	9" (3") = 27 in. ²	4.5"	121.5 in. ³	1.5"	40.5 in. ³	40.5in ² = 2.33in
	$A = \sum \Delta A = 40.5 \text{ in.}^2$		$\sum \overline{x} \Delta A = 202.5 \text{ in.}^3$		$\sum \overline{y} \Delta A = 94.5 \text{ in.}^3$	

Example 2 (pg 245) Example Problem 7.3b (Figure 7.13)

An alternate method that can be employed in solving this problem is referred to as the *negative area method*.

A 6" thick concrete wall panel is precast to the dimensions as shown. Using the lower left corner as the reference origin, determine the center of gravity (centroid) of the panel.

