Design of Isolated Square and Rectangular Footings (ACI 318-02)

NOTE: This procedure assumes that the footing is concentrically loaded and carries no moment so that the soil pressure may be assumed to be uniformly distributed on the base.

1) Find service dead and live column loads:
$P_{D}=$ Service dead load from column
$P_{L}=$ Service live load from column
$\mathrm{P}=\mathrm{P}_{\mathrm{D}}+\mathrm{P}_{\mathrm{L}}$ (typically - see ACI 9.2)
2) Find design (factored) column load, Pu :
$\mathrm{P}_{\mathrm{U}}=1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{L}}$
3) Find an approximate footing depth, h_{f}

$h_{f}=d+4 "$ and is usually in multiples of 2,4 or 6 inches.
a) For rectangular columns

$$
4 d^{2}+2(b+c) d=\frac{P_{u}}{\phi v_{c}}
$$

b) For round columns $\quad d^{2}+a d=\frac{P_{u}}{\phi v_{c}} \quad a=\sqrt{\frac{\pi d^{2}}{4}}$
where: a is the equivalent square column size

$$
\begin{aligned}
& v_{c}=4 \sqrt{f_{c}^{\prime}} \text { for two-way shear } \\
& \phi=0.75 \text { for shear }
\end{aligned}
$$

4) Find net allowable soil pressure, $q_{\text {net: }}$

By neglecting the weight of any additional top soil added, the net allowable soil pressure takes into account the change in weight when soil is removed and replaced by concrete:

$$
q_{\text {net }}=q_{\text {allowable }}-h_{f}\left(\gamma_{c}-\gamma_{s}\right)
$$

where γ_{c} is the unit weight of concrete (typically $150 \mathrm{lb} / \mathrm{ft}^{3}$) and γ_{s} is the unit weight of the displaced soil
5) Find required area of footing base and establish length and width:

$$
A_{\text {req }} \geq \frac{P}{q_{\text {net }}}
$$

For square footings choose $B \geq \sqrt{A_{\text {req }}}$
For rectangular footings choose $B \times L \geq A_{\text {req }}$

6) Check transfer of load from column to footing: ACI 15.8

a) Find load transferred by bearing on concrete in column: ACI 10.17
basic: $\phi P_{n}=\phi 0.85 f_{c}^{\prime} A_{1}$ where $\phi=0.65$ and A_{l} is the area of the column
with confinement: $\phi P_{n}=\phi 0.85 f_{c}^{\prime} A_{1} \sqrt{\frac{A_{2}}{A_{1}}}$ where $\sqrt{\frac{A_{2}}{A_{1}}}$ cannot exceed 2.
IF the column concrete strength is lower than the footing, calculate ϕP_{n} for the column too.
b) Find load to be transferred by dowels:

$$
\phi P_{\text {dowels }}=P_{u}-\phi P_{n}
$$

IF $\phi P_{n} \geq P_{u}$ only nominal dowels are required.

c) Find required area of dowels and choose bars

Req. dowel $A_{s}=\frac{\phi P_{\text {dowels }}}{\phi f_{y}}$ where $\phi=0.65$ and f_{y} is the reinforcement grade
Choose dowels to satisfy the required area and nominal requirements:
i) Minimum of 4 bars
ii) \quad Minimum $A_{s}=0.005 A_{g}$ ACI 15.8.2.1
where A_{g} is the gross column area
iii) 4-\#5 bars

d) Check dowel embedment into footing for compression: ACI 12.3 $l_{d c}=\frac{0.02 f_{y} d_{b}}{\sqrt{f_{c}^{\prime}}}$ but not less than $0.0003 f_{y} d_{b}$ or $8 "$ where d_{b} is the bar diameter
NOTE: The footing must be deep enough to accept $l_{d c}$. Hooks are not considered effective in compression and are only used to support dowels during construction.
e) Find length of lapped splices of dowels with column bars: ACI $\mathbf{1 2 . 1 6}$ l_{s} is the largest of:
i) larger of $l_{d c}$ or $0.0005 f_{y} d_{b}\left(f_{y}\right.$ of grade 60 or less) of smaller bar $\left(0.0009 f_{y}-24\right) d_{b}\left(f_{y}\right.$ over grade 60$)$
ii) $\quad l_{d c}$ of larger bar
iii) not less than 12"

See ACI 12.17.2 for possible reduction in l_{s}
7) Check two-way (slab) shear:
a) Find dimensions of loaded area:
i) For concrete columns, the area coincides with the column area, if rectangular, or equivalent square area if circular (see 3)b))
ii) For steel columns an equivalent loaded area whose boundaries are halfway between the faces of the steel column and the edges of the steel base plate is used: ACI 15.4.2c.

$b=b_{f}+\frac{\left(B-b_{f}\right)}{2}$ where b_{f} is the width of column flange and B is base plate side

$$
c=d_{f}+\frac{\left(C-d_{f}\right)}{2} \text { where } d_{f} \text { is the depth of column flange and } C \text { is base plate side }
$$

b) Find shear perimeter: ACI 11.12.1.2

Shear perimeter is located at a distance of $d / 2$ outside boundaries of loaded area and length is $b_{o}=2(c+d)+2(b+d)$
(average $d=h_{f}-3$ in. cover -1 assumed bar diameter)
c) Find factored net soil pressure, q_{u} :
$q_{u}=\frac{P_{u}}{B^{2}}$ or $\frac{P_{u}}{B \times L}$
d) Find total shear force for two-way shear, $V_{u 2}$:
$V_{u 2}=P_{u}-q_{u}(c+d)(b+d)$
e) Compare $V_{u 2}$ to two-way capacity, ϕV_{n} :

$V_{u 2} \leq \phi\left(2+\frac{4}{\beta_{c}}\right) \sqrt{f_{c}^{\prime}} b_{o} d \leq \phi 4 \sqrt{f_{c}^{\prime}} b_{o} d$
ACI 11.12.2.1
where $\phi=0.75$ and β_{c} is the ratio of long side to short side of the column
NOTE: This should be acceptable because the initial footing size was chosen on the basis of two-way shear limiting. If it is not acceptable, increase h_{f} and repeat steps starting at b).

8) Check one-way (beam) shear:

The critical section for one-way shear extends across the width of the footing at a distance d from the face of the loaded area (see 7)a) for loaded area). The footing is treated as a cantilevered beam. ACI 11.12.1.1
a) Find projection, L^{\prime} :
i) For square footing:

$$
L^{\prime}=\frac{B}{2}-(d+b / 2) \text { where } \mathrm{b} \text { is the smaller dim. of }
$$

the loaded area
ii) For rectangular footings:

$L^{\prime}=\frac{L}{2}-(d+\bullet / 2)$ where \bullet is the dim. parallel to the long side of the footing
b) Find total shear force on critical section, $V_{u l}$:

$$
V_{u 1}=B L^{\prime} q_{u}
$$

c) Compare $V_{u l}$ to one-way capacity, ϕV_{n} :

$$
V_{u 1} \leq \phi 2 \sqrt{f_{c}^{\prime}} B d \quad \text { ACI 11.12.3.1 where } \phi=0.75
$$

NOTE: If it is not acceptable, increase h_{f}.
9) Check for bending stress and design reinforcement:

Square footings may be designed for moment in one direction and the same reinforcing used in the other direction. For rectangular footings the moment and reinforcing must be calculated separately in each direction. The critical section for moment extends across the width of the footing at the face of the loaded area. ACI 15.4.1, 15.4.2.
a) Find projection, L_{m} :

$$
L_{m}=\frac{B}{2}-\frac{\bullet}{2} \text { where } \bullet \text { is the smaller dim. of column for a square }
$$ footing. For a rectangular footing, use the value perpendicular to the critical section.

b) Find total moment, M_{u}, on critical section:

$$
M_{u}=q_{u} \frac{B L_{m}^{2}}{2} \quad \text { (find both ways for a rectangular footing) }
$$

c) Find required A_{s} :
$R_{n}=\frac{M_{n}}{b d^{2}}=\frac{M_{u}}{\phi b d^{2}}$, where $\phi=0.9$, and ρ can be found
from Figure 3.8.1 of Wang \& Salmon.
or:
i) guess a
ii) $A_{s}=\frac{0.85 f_{c}^{\prime} b a}{f_{y}}$
iii) solve for $a=2\left(d-\frac{M_{u}}{\phi A_{s} f_{y}}\right)$
iv) repeat from ii) until a converges, solve for A_{s}

Minimum A_{s}

$$
\begin{array}{ll}
=0.0018 \mathrm{bh} & \text { Grade } 60 \text { for temperature and shrinkage control } \\
=0.002 \mathrm{bh} & \text { Grade } 40 \text { or } 50
\end{array}
$$

ACI 10.5.4 specifies the requirements of $\mathbf{7 . 1 2}$ must be met, and max. spacing of 18 "
d) Choose bars:

For square footings use the same size and number of bars uniformly spaced in each direction (ACI 15.4.3). Note that required A_{s} must be furnished in each direction.

For rectangular footings bars in long direction should be uniformly spaced. In the short direction bars should be distributed as follows (ACI 15.4.4):
i) In a band of width B_{s} centered on column:
$\#$ bars $=\frac{2}{L / B+1} \cdot(\#$ bars in $B) \quad($ integer $)$
ii) Remaining bars in short direction should be uniformly spaced in outer portions of footing.

e) Check development length:

Find required development length, l_{d}, in tension from handout or from equations in ACI 12.2. l_{d} must be less than $\left(L_{m}-2\right.$ ") (end cover). If not possible, use more bars of smaller diameter.

