Foundation Design

Notation:

- \(a \) = name for width dimension
- \(A \) = name for area
- \(b \) = width of retaining wall stem at base
- \(b_o \) = perimeter length for two-way shear in concrete footing design
- \(B \) = spread footing or retaining wall base dimension in concrete design
- \(cc \) = shorthand for clear cover
- \(d \) = effective depth from the top of a reinforced concrete member to the centroid of the tensile steel
- \(e \) = eccentric distance of application of a force (\(P \)) from the centroid of a cross section
- \(f \) = symbol for stress
- \(f'_c \) = concrete design compressive stress
- \(F_{\text{horizontal resisting}} \) = total force resisting horizontal sliding
- \(F_{\text{sliding}} \) = total sliding force
- \(F_x \) = force in the x direction
- \(F.S. \) = shorthand for factor of safety
- \(h_f \) = height of a concrete spread footing
- \(H \) = height of retaining wall
- \(H_A \) = horizontal force due to active soil pressure
- \(l_d \) = development length for reinforcing steel
- \(L \) = name for length or span length
- \(M \) = moment due to a force
- \(M_n \) = nominal flexure strength with the steel reinforcement at the yield stress and concrete at the concrete design strength for reinforced concrete beam design
- \(M_{\text{overturning}} \) = total overturning moment
- \(M_{\text{resisting}} \) = total moment resisting overturning about a point
- \(M_u \) = maximum moment from factored loads for LRFD beam design
- \(n \) = name for number
- \(N \) = name for normal force to a surface
- \(o \) = point of overturning of a retaining wall, commonly at the “toe”
- \(p \) = pressure
- \(p_A \) = active soil pressure
- \(P \) = name for axial force vector
- \(P_D \) = dead load axial force
- \(P_L \) = live load axial force
- \(P_u \) = factored axial force
- \(q \) = soil bearing pressure
- \(q_u \) = allowable soil bearing stress in allowable stress design, as is \(q_{allowable} \)
- \(q_g \) = gross soil bearing pressure
- \(q_{\text{net}} \) = net allowed soil bearing pressure, as is \(q_n \)
- \(q_u \) = ultimate soil bearing strength in allowable stress design
- \(q_{\text{allowable}} \) = factored soil bearing capacity in concrete footing design from load factors, as is \(q_{allowable} \)
- \(R \) = name for reaction force vector
- \(SF \) = shorthand for factor of safety
- \(t \) = thickness of retaining wall stem at top
- \(T \) = name of a tension force
- \(V \) = name for volume
- \(V_c \) = shear force capacity in concrete
- \(V_u \) = factored shear for reinforced concrete design
- \(w \) = name for width
- \(w_u \) = load per unit length on a beam from load factors
- \(W \) = name for force due to weight
- \(x \) = horizontal distance
- \(y \) = the distance in the y direction from a reference axis to the centroid of a shape
- \(\phi \) = resistance factor
- \(\gamma_c \) = density or unit weight of concrete
- \(\gamma_s \) = density or unit weight of soil
- \(\pi \) = \(\pi \) (3.1415 radians or 180°)
- \(\rho \) = reinforcement ratio in concrete beam design = \(A_s / bd \)
- \(\mu \) = coefficient of static friction
Foundations

A foundation is defined as the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock. The design differs from structural design in that the choices in material and framing system are not available, and quality of materials cannot be assured. Foundation design is dependent on geology and climate of the site.

Soil Mechanics

Soil is another building material and the properties, just like the ones necessary for steel and concrete and wood, must be known before designing. In addition, soil has other properties due to massing of the material, how soil particles pack or slide against each other, and how water affects the behavior. The important properties are

- specific weight (density)
- allowable soil pressure
- factored net soil pressure – allowable soil pressure less surcharge with a factor of safety
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Structural Strength and Serviceability

There are significant serviceability considerations with soil. Soils can settle considerably under foundation loads, which can lead to redistribution of moments in continuous slabs or beams, increases in stresses and cracking. Excessive loads can cause the soil to fail in bearing and in shear. The presence of water can cause soils to swell or shrink and freeze and thaw, which causes heaving. Fissures or fault lines can cause seismic instabilities.

A geotechnical engineer or engineering service can use tests on soil bearings from the site to determine the ultimate bearing capacity, q_u. Allowable stress design is utilized for soils because of the variability do determine the allowable bearing capacity, $q_a = q_u / (safety\ factor)$.

Values of q_a range from 3000 – 4000 psi for most soils, while clay type soils have lower capacities and sandy soils to rock have much higher capacities.
Soil acts somewhat like water, in that it exerts a lateral pressure because of the weight of the material above it, but the relationship is not linear. Soil can have an active pressure from soil behind a retaining wall and a passive pressure from soil in front of the footing. Active pressure is typically greater than passive pressure.

Foundation Materials

Typical foundation materials include:

- plain concrete
- reinforced concrete
- steel
- wood
- composites, ie. steel tubing filled with concrete

Foundation Design

Generalized Design Steps

Design of foundations with variable conditions and variable types of foundation structures will be different, but there are steps that are typical to every design, including:

1. Calculate loads from structure, surcharge, active & passive pressures, etc.
2. Characterize soil – hire a firm to conduct soil tests and produce a report that includes soil material properties
3. Determine footing location and depth – shallow footings are less expensive, but the variability of the soil from the geotechnical report will drive choices
4. Evaluate soil bearing capacity – the factor of safety is considered here
5. Determine footing size – these calculations are based on working loads and the allowable soil pressure
6. Calculate contact pressure and check stability
7. Estimate settlements
8. Design the footing structure – design for the material based on applicable structural design codes which may use allowable stress design, LRFD or limit state design (concrete).
Shallow Foundation Types

Considered simple and cost effective because little soil is removed or disturbed.

Spread footing – A single column bears on a square or rectangular pad to distribute the load over a bigger area.

Wall footing – A continuous wall bears on a wide pad to distribute the load.

Eccentric footing – A spread or wall footing that also must resist a moment in addition to the axial column load.

Combined footing – Multiple columns (typically two) bear on a rectangular or trapezoidal shaped footing.

Unsymmetrical footing – A footing with a shape that does not evenly distribute bearing pressure from column loads and moments. It typically involves a hole or a non-rectangular shape influenced by a boundary or property line.

Strap footing – A combined footing consisting of two spread footings with a beam or strap connecting the slabs. The purpose of this is to limit differential settlements.

Mat foundation – A slab that supports multiple columns. The mat can be stiffened with a grid or grade beams. It is typically used when the soil capacity is very low.

Deep Foundation Types

Considerable material and excavation is required, increasing cost and effort.

Retaining Walls – A wall that retains soil or other materials, and must resist sliding and overturning. Can have counterforts, buttresses or keys.

Basement Walls – A wall that encloses a basement space, typically next to a floor slab, and that may be restrained at the top by a floor slab.

Piles – Next choice when spread footings or mats won’t work, piles are used to distribute loads by end bearing to strong soil or friction to low strength soils. Can be used to resist uplift, a moment causing overturning, or to compact soils. Also useful when used in combination to control settlements of mats or slabs.

Drilled Piers – Soil is removed to the shape of the pier and concrete is added.

Caissons – Water and possibly wet soil is held back or excavated while the footing is constructed or dropped into place.
Loads and Stresses

Bearing loads must be distributed to the soil materials, but because of their variability and the stiffness of the footing pad, the resulting stress, or soil pressure, is not necessarily uniform. But we assume it is for design because dealing with the complexity isn’t worth the time or effort.

The increase in weight when replacing soil with concrete is called the overburden. Overburden may also be the result of adding additional soil to the top of the excavation for a retaining wall. It is extra uniformly distributed load that is considered by reducing the allowable soil pressure (instead of increasing the loads), resulting in a net allowable soil pressure, \(q_{\text{net}} \):

\[
q_{\text{net}} = q_{\text{allowable}} - h_f (\gamma_c - \gamma_s)
\]

In order to design the footing size, the actual stress \(P/A \) must be less than or equal to the allowable pressure:

\[
\frac{P}{A} \leq q_{\text{net}}
\]

Design Stresses

The result of a uniform pressure on the underside of a footing is identical to a distributed load on a slab over a column when looked at upside down. The footing slab must resist bending, one-way shear and two-way shear (punching).

Stresses with Eccentric Loading

Combined axial and bending stresses increase the pressure on one edge or corner of a footing. We assume again a linear distribution based on a constant relationship to settling. If the pressure combination is in tension, this effectively means the contact is gone between soil and footing and the pressure is really zero. To avoid zero pressure, the eccentricity must stay within the kern. The maximum pressure must not exceed the net allowable soil pressure.

If the contact is gone, the maximum pressure can be determined knowing that the volume of the pressure wedge has to equal the column load, and the centroid of the pressure wedge coincides with the effective eccentricity.

Wedge volume is \(V = \frac{wpx}{2} \) where \(w \) is the width, \(p \) is the soil pressure, and \(x \) is the wedge length (3a), so \(p = \frac{2P}{wx} \) or \(\frac{2N}{wx} \) (and \(e = \frac{M}{P} \) or \(\frac{M}{N} \) and \(a = \frac{1}{2} \text{ width} - e) \)
Overturning is considered in design such that the resisting moment from the soil pressure (equivalent force at load centroid) is greater than the overturning moment, M, by a factor of safety of at least 1.5

$$ SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 $$

where

$M_{\text{resist}} = $ average resultant soil pressure \times width \times location of load centroid with respect to column centroid

$M_{\text{overturning}} = P \times e$

Combined Footings

The design of combined footing requires that the centroid of the area be as close as possible to the resultant of the two column loads for uniform pressure and settling.

Retaining Walls

The design of retaining walls must consider overturning, settlement, sliding and bearing pressure. The water in the retained soil can significantly affect the loading and the active pressure of the soil. The lateral force acting at a height of $H/3$ is determined from the active pressure, p_A, (in force/cubic area) as:

$$ H_A = \frac{p_A H^2}{2} $$

Overturning is considered the same as for eccentric footings:

$$ SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2 $$

where

$M_{\text{resist}} = $ summation of moments about “o” to resist rotation, typically including the moment due to the weight of the stem and base and the moment due to the passive pressure.

$M_{\text{overturning}} = $ moment due to the active pressure about “o”.

Sliding must also be avoided:

$$ SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2 $$

where:

$F_{\text{horizontal-resist}} = $ summation of forces to resist sliding, typically including the force from the passive pressure and friction ($F=\mu\cdot N$ where μ is a constant for the materials in contact and N is the normal force to the ground acting down and shown as R).

$F_{\text{sliding}} = $ sliding force as a result of active pressure.
For sizing, some rules of thumbs are:

- footing size, B
- reinforced concrete, $B \approx 2/5 - 2/3$ wall height (H)
- footing thickness, $h_f \approx 1/12 - 1/8$ footing size (B)
- base of stem, $b \approx 1/10 - 1/12$ wall height ($H+h_f$)
- top of stem, $t \geq 12$ inches

Example 1

Example 2. Design a square column footing for the following data:

- Soil density = 100 lb/ft3, Concrete density = 150 lb/ft3
- Column load = 200 kips [890 kN] dead load and 300 kips [1334 kN] live load
- Column size = 15 in. [380 mm] square
- Maximum allowable soil pressure = 4000 psf [200 kPa]
- Concrete design strength = 3000 psi [21 MPa]
- Yield stress of steel reinforcement = 40 ksi [280 MPa]
(b) For punching shear

(a) For beam-type shear

Critical section for bending & development
141" × 26.9"

Average d
25.5"

Force due to soil pressure

11'-6" of 141"
Example 2
For the 16 in. thick 8.5 ft. square reinforced concrete footing carrying 150 kips dead load and 100 kips live load on a 24 in. square column, determine if the footing thickness is adequate for 4000 psi. A 3 in. cover is required with concrete in contact with soil.
Also determine the moment for reinforced concrete design.

SOLUTION:
1. Find design soil pressure:
 \[q_u = \frac{P_u}{A} \]
 \[P_u = 1.2D + 1.6L = 1.2 \times 150 \text{ k} + 1.6 \times 100 \text{ k} = 340 \text{ k} \]
 \[q_u = \frac{340k}{(8.5 \text{ ft})^2} = 4.71 \text{ k/ft}^2 \]
2. Evaluate one-way shear at \(d \) away from column face (Is \(V_u < \phi V_c \)?)
 \[d = h_r - \text{c.c.} - \text{distance to bar intersection} \]
 presuming #8 bars:
 \[d = 16 \text{ in.} - 3 \text{ in.} \text{ (soil exposure)} - 1 \text{ in. \times (1 layer of #8's)} = 12 \text{ in.} \]
 \[V_u = \text{total shear} = q_u \text{ (edge area)} \]
 \[V_u \text{ on a 1 ft strip} = q_u \text{ (edge distance) (1 ft)} \]
 \[V_u = 4.71 \text{ k/ft}^2 \times [(8.5 \text{ ft} - 2 \text{ ft})/2 - (12 \text{ in.})/12 \text{ in.}] \text{ (1 ft)} = 10.6 \text{ k} \]
 \[\phi V_u = \text{one-way shear resistance} = \phi \frac{f'_c}{b} d \]
 for a one foot strip, \(b = 12 \text{ in.} \)
 \[\phi V_u = 0.75(2 \sqrt{4000} \text{ psi})(12 \text{ in.})(12 \text{ in.}) = 13.7 \text{ k} > 10.6 \text{ k OK} \]
3. Evaluate two-way shear at \(d/2 \) away from column face (Is \(V_u < \phi V_c \)?)
 \[b_o = \text{perimeter} = 4 \times (24 \text{ in.} + 12 \text{ in.}) = 4 \times 36 \text{ in.} = 144 \text{ in.} \]
 \[V_u = \text{total shear on area outside perimeter} = P_u - q_u \text{ (punch area)} \]
 \[V_u = 340 \text{ k} - (4.71 \text{ k/ft}^2)(36 \text{ in.})(1 \text{ ft}/12 \text{ in.})^2 = 297.6 \text{ kips} \]
 \[\phi V_u = \text{two-way shear resistance} = \phi \frac{f'_c}{b} d = 0.75(4 \sqrt{4000} \text{ psi})(144 \text{ in.})(12 \text{ in.}) = 327.9 \text{ k} > 297.6 \text{ k OK} \]
4. Design for bending at column face
 \[M_u = w u L^2/2 \text{ for a cantilever. L = (8.5 ft - 2 ft)/2 = 3.25 ft, and w_o for a 1 ft strip = q_u (1 ft)} \]
 \[M_o = 4.71 \text{ k/ft}(3.25 \text{ ft})^2/2 = 24.9 \text{ k-ft (per ft of width)} \]
 To complete the reinforcement design, use \(b = 12 \text{ in.} \) and trial \(d = 12 \text{ in.} \), choose \(\rho \), determine \(A_u \), find if \(\phi M_n > M_u \).
5. Check transfer of load from column to footing:
 \[\phi P_n = \phi 0.85f'_c A_1 \frac{A_2}{A_1} \leq \phi 0.85f'_c 2A_1 = 0.65(0.85)(4000 \text{ psi})(2)(12 \text{ in.})(12 \text{ in.}) = 636.5 \text{ k} > 340 \text{ k OK} \]
Example 3

Example 3.1: Evaluate the suitability of a 4-ft square footing supporting a 1-ft square column ($P_c = 75$ kips and $P_f = 25$ kips) for an allowable soil pressure of $7 \, \text{kips/ft}^2$ using a) gross soil pressure, b) net soil pressure. The bottom of the one-foot thick footing is set at 5 ft below grade. The unit weight of soil is given as 125 pcf.

a) gross soil pressure, q_g:

- footing weight: $(4)(4)(1)(0.150) = 2.4$
- column weight: $(1)(1)(4)(0.150) = 0.6$
- soil weight: $(4)(16-1)(0.125) = 7.5$
- service loads: $75 + 25 = 100.0$

Total

$q_g = \frac{P}{A} = \frac{110.5}{16} = 6.9 \, \text{kips/ft}^2 < 7 \, \text{kips/ft}^2 \text{ O.K.}$

b) net soil pressure, q_n:

$q_n = \frac{100}{16} = 6.25 \, \text{kips/ft}^2 < q_n = 7 - 1(0.150-0.125) = 6.975 \, \text{kips/ft}^2 \text{ O.K.}$

c) $q_{bu} = \frac{1.2(75) + 1.6(25)}{16} = 8.13 \, \text{kips/ft}^2$

Example 4

Determine the depth required for the group of 4 friction piles having 12 in. diameters if the column load is 100 kips and the frictional resistance is 400 lbs/ft2.

SOLUTION:
The downward load is resisted by a friction force. Friction is determined by multiplying the friction resistance (a stress) by the area: $F = fA_{SKIN}$

The area of n cylinders is: $A_{SKIN} = n(2\pi \frac{d}{2} L)$

Our solution is to set $P \leq F$ and solve for length:

$$100k \leq 400 \frac{lb}{ft^2}(4^{pile})\frac{(2\pi)(12in)}{2}L(\frac{1ft}{12in})(\frac{1k}{1000lb})$$

$$L \geq 19.9 \frac{ft}{pile}$$

Example 5

Determine the depth required for the friction and bearing pile having a 36 in. diameter if the column load is 300 kips, the frictional resistance is 600 lbs/ft2 and the end bearing pressure allowed is 8000 psf.

SOLUTION:
The downward load is resisted by a friction force and a bearing force, which can be determined from multiplying the bearing pressure by the area in contact: $F = fA_{SKIN} + qA_{TIP}$

The area of a circle is: $A_{TIP} = \pi \frac{d^2}{4}$

Our solution is to set $P \leq F$ and solve for length:

$$300k \leq 600 \frac{lb}{ft^2}(2\pi \frac{36in}{2})(\frac{1ft}{12in})(\frac{1k}{1000lb}) + 8000 \frac{lb}{ft^2}(\pi \frac{36in}{4})(\frac{1ft}{12in})(\frac{1k}{1000lb})$$

$$L \geq 43.1 \text{ ft}$$