Problem Solving, Units and Numerical Accuracy

Problem Solution Method:

1.	$\begin{array}{c c} Inputs \\ Outputs \\ "Critical Path" \end{array} \end{array} \xrightarrow[]{} \begin{array}{c} \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\$					
2.	Draw simple diagram of body/bodies & forces acting on it/them.					
3.	Choose a reference system for the forces.					
4.	Identify key geometry and constraints.					
5.	Write the basic equations for force components.					
6.	Count the equations & unknowns.					
7.	SOLVE					
8.	. "Feel" the validity of the answer. (Use common sense. Check units)					
Ex	ample: Two forces, A & B, act on a particle. What is the resultant? 1. <u>GIVEN:</u> Two forces on a particle and a diagram with size and orientation <u>FIND:</u> The "resultant" of the two forces					

SOLUTION:

- 2. Draw what you know (the diagram, any other numbers in the problem statement that could be put on the drawing....)
- 3. Choose a reference system. What would be the easiest? Cartesian, radian?
- 4. Key geometry: the location of the particle as the origin of all the forces Key constraints: the particle is "free" in space
- 5. Write equations: $size of A^2 + size of B^2 = size of resultant$

$$\sin\alpha = \frac{\sin 2 \cos B}{\sin 2 \cos B}$$

- 6. Count: Unknowns: 2, magnitude and direction \leq Equations: 2 \therefore can solve
- 7. Solve: graphically or with equations
- 8. "Feel": Is the result bigger than A and bigger than B? Is it in the right direction? (like A & B)

Units

Units	Mass	Length	Time	Force
SI	kg	m	S	$N = \frac{kg \cdot m}{s^2}$
Absolute English	lb	ft	S	Poundal = $\frac{lb \cdot ft}{s^2}$
Technical English	$slug = rac{lb_f \cdot s^2}{ft}$	ft	S	Ib _{force}
Engineering English	lb	ft	S	Ib _{force}
	$lb_{force} = lb_{(mass)} \times 32$	$2.17 \frac{\pi}{s^2}$		
gravitational constant	$g_{c} = 32.17 \frac{ft}{s^{2}}$	(English)		
	$g_{c} = 9.81 \frac{m}{s^{2}}$	(SI)		
conversions (pg. vii)	1 in = 25.4 mm 1 lb = 4.448 N			

Numerical Accuracy

Depends on 1) accuracy of data you are given

2) accuracy of the calculations performed

The solution CANNOT be more accurate than the less accurate of #1 and #2 above!

DEFINITIONS:	precision	the number of significant digits
	accuracy	the possible error

Relative error measures the degree of accuracy:

 $\frac{\textit{relative error}}{\textit{measurement}} \times 100 = \textit{degree of accuracy}(\%)$

For engineering problems, accuracy *rarely* is less than 0.2%.

2