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Beam Bending Stresses and Shear Stress
Notation:
A = name for area = number of connectors across a joint
Awer = area of the web of a wide flange a. = shorthand for neutral axis (N.A.)
section = name for reference origin
b = width of a rectangle = pitch of connector spacing

= total width of material at a
horizontal section

c = largest distance from the neutral
axis to the top or bottom edge of a
beam

d = calculus symbol for differentiation

= depth of a wide flange section

d, = difference in the y direction

between an area centroid (y ) and
the centroid of the composite shape

()

DL = shorthand for dead load

E = modulus of elasticity or Young’s
modulus

v = bending stress

fe = compressive stress

fmax = maximum stress

fi = tensile stress

fo = shear stress

F, = allowable bending stress

Fonnector = shear force capacity per
connector

h = height of a rectangle

1 = moment of inertia with respect to
neutral axis bending

I = moment of inertia with respect to
an x-axis

L = name for length

LL = shorthand for live load
= internal bending moment
= name for a moment vector

<
|

name for a force vector

= shear per length (shear flow)

= first moment area about a neutral
axis

Oconnectea = first moment area about a neutral

axis for the connected part
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I

R = radius of curvature of a deformed
beam
S = section modulus

Sreq:a = section modulus required at
allowable stress

t, = thickness of web of wide flange

V = internal shear force

Viongindinai= longitudinal shear force

Vr = transverse shear force

w = name for distributed load

X = horizontal distance

y = vertical distance

y = the distance in the y direction from

a reference axis (n.a) to the centroid
of a shape

= the distance in the y direction from
a reference axis to the centroid of a
composite shape

A = calculus symbol for small quantity
o = elongation or length change

& = strain

0 = arc angle

P

= summation symbol
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Pure Bending in Beams

With bending moments along the axis of the member only, a beam is
said to be in pure bending.

Normal stresses due to bending can be found for homogeneous
materials having a plane of symmetry in the y axis that follow

Hooke’s law.
y

Maximum Moment and Stress Distribution

In a member of constant cross section, the maximum bending moment will govern the design of
the section size when we know what kind of normal stress is caused by it.

For internal equilibrium to be maintained, the bending moment will be equal to the 2M from the
normal stresses x the areas x the moment arms. Geometric fit helps solve this statically
indeterminate problem:

1. The normal planes remain normal for pure bending.
2. There is no net internal axial force.
3. Stress varies linearly over cross section.
4. Zero stress exists at the centroid and the line of centroids is the neutral axis (n. a)
~VEFTICAL GRIP LINES _— EENTRAPAL AXie
{ MNBEUTRAL sUpfacg | . d ALEF EALLED THE
L c? lr:\ / NEUTRAL AXlaipLA )
T ] / fmm
S I 3 S - L K L] .3
| |
: L
LA : ;_-a FAE .-.
V% P T
Figure 8.5(a)  Beam elevation before loading. Beam cross section.
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Figure 8.5(b)  Beam bending under load.

Figwre 8.8 Bending stresses on section b-b.
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Relations for Beam Geometry and Stress

Pure bending results in a circular arc deflection. R is the
distance to the center of the arc; 0 is the angle of the arc
(radians); c is the distance from the n.a. to the extreme fiber; fmax
is the maximum normal stress at the extreme fiber;y is a

distance in y from the n.a.; M is the bending moment; I is the c
moment of inertia; S is the section modulus.
o
L:Rg 8:_:R szg:meax
L c
1 Mc M
c c 1 S
M 3 2
Now: fb = Ty for a rectangle of height h and width b:  § = bh bh

12%: 6

RELATIONS:

1 M M, 1
— - f="2 S ==
R EI 1 c
Mc M M
f})—max - = Srequiredz_
I S F,

*Note: y positive goes DOWN. With a positive M and y to the bottom fiber as positive, it results
in a TENSION stress (we’'ve called positive)

Transverse Loading in Beams

We are aware that transverse beam loadings result in internal
shear and bending moments.

We designed sections based on bending stresses, since this stress
dominates beam behavior.

There can be shear stresses horizontally within a beam member.
It can be shown that f, . .= f

tical
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Equilibrium and Derivation

In order for equilibrium for any element CDD’C’, there needs to be a horizontal force AH.
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Q 1s a moment area with respect to the neutral axis of the area above or below the horizontal

where the AH occurs.
AL 2w
Q 1s a maximum when y = 0 (at the neutral axis). fongitudint
q is a horizontal shear per unit length — shear flow . Vlongitu dinl _ V.0
Ax 1
Shearing Stresses
f,-0. = 0 on the beam’s surface. Even if Q is a maximum at y =0, we P
don’t know that the thickness is a minimum there. IF
v | |
"T A4 b Ax R .'
4 L
f = Q ": L"‘H-.h
v—ave Ib oy R
Rectangular Sections
f,_.... occurs at the neutral axis:
3 _ 2
I R A
12
then: Fig. 6.15
f_VQ_V%bh2_3V =3 |
" Ib Y,bh’b  2bh © 24 I3
].l 5 it




ARCH 331 Note Set 10.1 F2013abn

Webs of Beams t ' .r;
s : I I 3 ) i

In steel W or S sections the thickness ‘ _ S i

varies from the flange to the web. ) R— :‘. ¢ el ___l ;
| | ¥

We neglect the shear stress in the flanges ‘ I’_—’| l—-l ) _i'_ :

and consider the shear stress in the web to 1 | |r &

be constant: Web

r 3 V y V '

vemax g T vemax
2A web twebd

Flastic Hinges
in Aonges

Webs of I beams can fail in tension shear across a
panel with stiffeners or the web can buckle.

[ ] [ ]
—————— |
Buckling A= :
_____ - il = Crushing {a} Sheor Failure
F——- Crushing ] 3
' m
I 0 I = 0 Folds ar Buckles
b)) Shear Bucklin
zFSupport Euppori l{,‘uppmi ( > g
Shear Flow o 4

Even if the cut we make to find Q is not horizontal, but
arbitrary, we can still find the shear flow, q, as long as the
loads on thin-walled sections are applied in a plane of
symmetry, and the cut is made perpendicular to the surface of
the member.

977

The shear flow magnitudes can
be sketched by knowing Q.

—
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Connectors to Resist Horizontal Shear in Composite Members

2 /
-
d e 7

Typical connections needing to resist shear are
plates with nails or rivets or bolts in composite
sections or splices.

The pitch (spacing) can be determined by the
capacity in shear of the connector(s) to the
shear flow over the spacing interval, p.

Vlongitudiml _ VQ Vv] VQ

- ongitudial = I 4

p 1

where

Q connected area
pP= pitCh length nﬁ;onnector 2 I )

n = number of connectors connecting the connected area to the rest of the cross section

F = force capacity in one connector

Qconnected area Aconnected area X Yconnected area

Veonnected arca — distance from the centroid of the connected area to the neutral axis

Connectors to Resist Horizontal Shear in Composite Members

Even vertical connectors have shear flow across them. A p.
i
1
]
]

The spacing can be determined by the capacity in shear of the i
connector(s) to the shear flow over the spacing interval, p. !

— |- |

< nFconnectorI I :

pP= -
VQCO nnected area

Unsymmetrical Sections or Shear
If the section is not symmetric, or has a shear not in that plane, the member can bend and twist.
If the load is applied at the shear center dr = q ds 2

there will not be twisting. This is the i [
location where the moment caused by } s
,, I
B

shear flow = the moment of the shear
force about the shear center.
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= 1201b/g

Example 1 (pg 303) p i

Example Problem 9.2 (Figures 9.15 to 9.18) I

L=12
Abeam must span a distance of 12" and carry a uniformly 1720 b 1720 b
distributed load of 120 1b./ft. Determine which cross- ) ’
section would be the least stressed: a, b, or c.

+720 Ib.

>
2.5'
=

N g

C

5
|

|
[
l 10" ’ .
(a) m & J*J I . 1'
4 : 720 Ib.
!
|
|

Mmax=2,160 Ib.-ft.

——
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Example 2 (pg 309) ) Second Floor:
Example Problem 9.7 (Figures 9.31 to 9.33) 3100 Ib p—
100 Ib remtesaly (roof+wall)
Design the roof and second-floor beams if F, = 1550 psi ® = 300 1/,
(Southern pine No. 1), and evaluate the shear stress. \
Roof: S +DL = 200 Ib/ft *Also select the most economical ’ 1 l I l 1"1 l l l i l l l i l l l l ]
\K?aﬁlé- r(;)(;)vlb on 2™ floor beams steel section for the second-floor I t
: .3
Railing: 100 Ib on beam overhang when Sreqq 2 165 in” and evaluate 4,454 Brl 10
Secon d.Floor' DL + LL = 300 Ib/ft the shear stress when V = 60 k. 2] 3 9 3
(including overhang)
Roof: 3 —lrgs
2.20
T
l & ﬁ\ 120 A LY SN T v
{ Col.wall | Wall ¥
(2,700 Ib) (900 Ib)
91 -2.94
+1,5001b.
W
-1,200 -900 ™
FLE \I{ -0.80 /
‘ 525
I +2,025
"

-3,600 Ib-ft
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Example 3 (pg 313)

Example Problem 9.8: Shear Stress
(Figures 9.43 to 9.47)

Note Set 10.1

Calculate the maximum bending and shear stress for the
beam shown.

ALSO: Determine the minimum nail
spacing required (pitch) if the shear
capacity of a nail (Fconnector) 18 250 1b.

!

N.A.

Component A(in?) Y (in.) YAA (in)
12 7 84
’ 12 3 36
Component I Gn | AGn? | d,Gn) | Ad} (n)
= 4 12 2 48
' 36 12 2 48
__NA
i Q
5
. I> 1 — Shear plane
L 3§
A A=10in2
o
,°
[
X
|>
,TK NA.
' Shear plane

" I\ Ref. origin

F2013abn
© =100 Ib/g
TR R,
] | L=20' A
4 0L/3 =1,000 Ib. 41,000 Ib.
1,000 Ib.
v
10
-1,000 Ib.
M= 5,000 Io-ft
M
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Example 4

8.11 A built-up plywood box beam with 2 x 4 545 top and
bottom flanges is held together by nails. Determine the
pitch (spacing) of the nails if the beam supports a uniform
load of 200 #/ft. along the 26-foot span. Assume the nails
have a shear capacity of 80# each.

Solution:

Construct the shear (V) diagram to obtain the critical shear
condition and its location

Note that the condition of shear is critical at the supports,
and the shear intensity decreases as you approach the
center line of the beam. This would indicate that the nail
spacing P varies from the support to midspan. Nails are
closely spaced at the support, but increasing spacing
occurs toward midspan, following the shear diagram.

_vo
fo= "
o "3 " m3
p 2 S08) BSNASY 505 6 i 3
12 12

SHEAR-PLANE S
(Az 5,25 1N.7)
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Lxé S4S
/ Top & BoTIoM

- Vo PLTWeeD
s HEP BA.SIPE

_ NLA

X

Waqp0# #/eT.

0= T4y = (9")(%"AS5"HOM(A")(4.5")+(1.5")(3.5")(8.25") = 83.8 in’

_ (2,6004)(83.3in.”)
(1,202.6in." Y( 1"+ 13"

=180.2 psi

SHEAR PLANE &
(Az5,251N.7)

#
=
|

&

Q=Ay=(5.25in.%)(8.25") =43.3 in.?

Shear force = f, x A,
where:

A, = shear area

10

Assume:
(n)F = Capacity of tw

()F > f, xbxp:‘;—bxbp

E s (mF2px

pP=

(n)

0 nails (one each side) at the
flange; representing two shear surfaces

Q

vo P
I 149) £E2IsTING-

7 SURFAcE
PER NAIL

At the maximum shear location (support) where V = 2,600#

(2 nails x 80 #/nail )(1,202.6 in) __ .,

(2,600# )(43.3 in.?)



